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Tentamen bestar av nio uppgifter som var och en ger maximalt fyra
poang.

Pa de tre forsta uppgifterna, som utgor del I, dr det endast maojligt
att fa 0, 3 eller 4 podng. Dessa tre uppgifter kan erséttas med resultat
fran den l6pande examinationen. De tva kontrollskrivningarna svarar
mot uppgift 1 och 2 och seminarierna mot uppgift 3. Godkéand kon-
trollskrivning eller godkédnd seminarieserie ger 3 poéng pa motsvaran-
de uppgift och vill godkénd kontrollskrivning eller seminarieserie ger 4
podng. For att hoja fran den 16pande examinationen fran 3 poéng till
4 kravs att hela uppgiften loses.

Resultat fran den 16pande examinationen kan endast tillgodordknas
vid ordinarie tentamen och ordinarie omtentamen fér den aktuella
kursomgangen.

Uppgifterna 4 — 6 utgor del I1, och och de tre sista uppgifterna utgor
del IIT, som fréamst till for de hogre betygen, A, B och C.

Betygsgrénserna vid tentamen kommer att ges av

Betyg /A B C D E Fx
Total poéng 27 24 21 18 16 15
varav frandel IIT| 6 3 - - - -

For full poéng pa en uppgift kriavs att losningarna ar vél presentera-
de och litta att folja. Det innebér speciellt att inférda beteckningar ska
definieras, att den logiska strukturen tydligt beskrivs i ord eller sym-
boler och att resonemangen ar vil motiverade och tydligt forklarade.
Losningar som allvarligt brister i dessa avseenden bedéms med hogst
tva poang.




DEL I
(1) Forenkla uttrycket

7
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sa langt som mojligt.

(2) a) Visa att

b) Var ligger felet i foljande "bevis” for att Y oo 28 = —17

Summan av en geometrisk serie med forsta term a och kvot q

ges av Y o aq” = 1%, Uttrycket S oo 2® dr en geometrisk
serie med forsta term a =1 och kvot q = 2.

(3) Avgor for vilka z i intervallet 0 < x < 27 det géller att

cosx +sinx > 1.

DEeL 11

(4) Lat z:4<cosz—|—z'sinz> och lat w:\/§<cosz—l—z'sinz>.
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z o o veqe
Beriikna — och skriv resultatet pa sa enkel form som mdjligt.
w

(5) a) Lat p(z) vara ett polynom av gradtal n > 1, och lat w vara
ett komplext tal. Bevisa att
(x — w) &r en faktor i p(x)
—

r = w ar en losning till ekvationen p(z) = 0.

(De tva pastaendena &r i sjilva verket ekvivalenta, men du
behover alltsa bara visa implikationen i den ena riktningen.)

(2p)
b) Lat ¢(z) = z* + 223 — 1122 + 8z — 60 .
Visa att ¢(2i) = q(—2i) = 0, och bestdm sedan alla dvriga rotter
till ekvationen ¢(x) = 0. (2 p)



(6) Los ekvationen /8 4 log,(2?) = log, .

DEL III
(7) For vilka reella tal x géller det att |z + 6| < 2 ?

(8) a) Bestédm en linjar funktion L(h) = ah + b som ger goda app-
roximationer till uttrycket /36 + h for sma virden pa |h|, och
anvind sedan L(h) for att bestdmma en approximation till v/35.

(2p)
b) Motivera varfor ditt val av approximerande funktion L(h)
ger bra approximationer fér sma vérden pa |h|. (2 p)

(9) Gar det att finna en inverterbar funktion fran de naturliga talen
till de rationella talen sadan att dess invers &r definierad for alla
rationella tal? Forklara hur en sadan funktion kan konstureras,
eller bevisa att det inte &r mojligt att finna en sadan funktion.




