Classification of Systems

In general: $y(n)=H(u(n))$
Properties: time invariant - time variable

$$
\begin{aligned}
& \text { static - dynamic } \\
& \text { linear - non-linear } \\
& \text { causal - non-causal } \\
& \text { stable - unstable }
\end{aligned}
$$

Common assumption: Linear Time Invariant (LTI)

$$
y(n)=\sum_{k=-\infty}^{\infty} h(n-k) u(k)=\sum_{k=-\infty}^{\infty} u(n-k) h(k)=h(n) * u(n)
$$

$h(n)$ - the impulse response of the system

Digital Signal Processing
1
Before lecture 1

Classification of Signals

Two important classes:	\mathcal{L}_{1}-signals	l_{1}-signals
	\mathcal{L}_{2}-signals	l_{2}-signals

Common Properties:

periodic - aperiodic
symmetric - antisymmetric - neither
stochastic - deterministic

Stochastic Signals

Typical assumption: (wide sense) stationarity
Mean value: $\mathrm{E}[x(n)]=m_{x}$, constant, independent on n.
Covariance sequence: $\mathrm{E}\left[x(n) x^{*}(n-k)\right]=r_{x x}(k)$ independent of n.
Property: $r_{x x}(-k)=r_{x x}^{*}(k)$
Average Power: $P_{x}=\mathrm{E}\left[|x(n)|^{2}\right]=r_{x x}(0) \geq 0$

Two-sided Z-transform

$$
X(z)=Z\{x(k)\}=\sum_{k=-\infty}^{\infty} x(k) z^{-k}
$$

Exists only where the series converges.
This region is called the Region of Convergence (ROC).
The signal is uniquely determined by the Z-transform together with the ROC.

Z-transforms, Properties

Linearity

$$
Z\left\{a x_{1}(n)+b x_{2}(n)\right\}=a Z\left\{x_{1}(n)\right\}+b Z\left\{x_{2}(n)\right\}
$$

Time shift

$$
Z\{x(n-k)\}=z^{-k} X(z)
$$

Convolution

$$
Z\left\{x_{1}(n) * x_{2}(n)\right\}=Z\left\{x_{1}(n)\right\} Z\left\{x_{2}(n)\right\}
$$

Scaling

$$
Z\left\{a^{n} x(n)\right\}=X(z / a)
$$

Z-transforms, More Properties

Time reversal

$$
Z\{x(-n)\}=X\left(z^{-1}\right)
$$

Conjugation (Complex signals)

$$
Z\left\{x^{*}(n)\right\}=X^{*}\left(z^{*}\right)
$$

Derivation

$$
\frac{d X(z)}{d z}=-z^{-1} Z\{n x(n)\}
$$

Rational Z-transform

Many systems can be described by a difference equation

$$
y(n)=-\sum_{k=1}^{N_{a}} a_{k} y(n-k)+\sum_{k=0}^{N_{b}} b_{k} x(n-k)
$$

Corresponds to a rational Z-transform as transfer function $\left(a_{0}=1\right)$

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N_{b}} b_{k} z^{-k}}{\sum_{k=0}^{N_{a}} a_{k} z^{-k}}
$$

Zeros: z such that $H(z)=0$
Poles: z such that $H(z)=\infty$

