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3rd lecture 

Markov chains cont 
Birth-death process  
  - Poisson process 
Discrete time Markov chains 
 

Viktoria Fodor 

KTH EES 



2 EP2200 Queuing theory and teletraffic 
systems 

Outline for today 

Continuous time Markov-chains 

• Recall: continuous time Markov chains 

• Transient and steady state solutions 

• Balance equations – local and global 

• Birth-death process as special case 

• Poisson process as special case  

Discrete time Markov-chains 
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Continuous-time Markov chains 
(homogeneous case)  

• Continuous time, discrete space stochastic process, with Markov 
property, that is: 

 

 

 

• State transition can happen in any point of time 

• Determined by the transition intensity matrix 
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Outline for today 

Continuous time Markov-chains 

• Recall: continuous time Markov chains 

• Transient and steady state solutions 

• Balance equations – local and global 

• Birth-death process as special case 

• Poisson process as special case  

Discrete time Markov-chains 
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EP2200 Queuing theory and teletraffic systems 

Transient solution 

• The transient - time dependent – state probability distribution 

• p(t)={p0(t), p1(t), p2(t),...} – probability of being in state i at time t, 
    given p(0). 

 

Transient solution 

leaves the state arrives to the state 



6 EP2200 Queuing theory and teletraffic systems 

Example – transient solution 
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• Def: stationary state probability distribution (stationary solution)  

–                   exists 

– p is independent from p(0) 

• The stationary solution p has to satisfy: 

 

 

 

Note: the rank of QMM is M-1! 
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Important theorems – without the proof 

 

• Stationary solution exists, if 

– The Markov chain is irreducible (there is a path between any two states) and 

–                            has  positive solution 

 

• Equivalently, stationary solution exists, if 

– The Markov chain is irreducible 

– For all states: the mean time to return to the state is finite 

 

• Finite state, irreducible Markov chains always have stationary solution. 

 

• Markov chains with stationary solution are also ergodic: 

– pi  gives the portion of time a single realization spends in state i, and 

– the probability that one out of many realizations are in state i at arbitrary 

point of time  

1,0  1Q pp

Stationary solution (steady state) 
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Outline for today 

Continuous time Markov-chains 

• Recall: continuous time Markov chains 

• Transient and steady state solutions 

• Balance equations – local and global 

• Birth-death process as special case 

• Poisson process as special case  

Discrete time Markov-chains 
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Balance equations 

• How can we find the stationary solution? pQ=0 

 

 

 

 

 

 

 

 

 

• Global balance conditions 

– In equilibrium (for the stationary solution) 

– the transition rate out of a state – or a group of states - must equal 
the transition rate into the state (or states) 

• flow in = flow out 

– defines a global balance equation 
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Group work 

• Global balance equation for state 1 and 2: 

P1 p2 P3 

P4 

q12 

q43 
q14 

q32 
q21 

• Is there a global balance equation for the circle around 
states 1 and 2?  
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Balance equations 

• Local balance conditions in equilibrium 

– the local balance means that the total flow from one part of the chain 

must be equal to the flow back from the other part 

– for all possible cuts 

– defines a local balance equation 

– The local balance equation is the same as a global balance equation 

around a set of states! 
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Balance equations 

• Set of linear equations instead of a matrix equation 

 

 

 

 

 

 

 

• Global balance :  

– flow in = flow out around a state 

– or around many states 

• Local balance equation: 

– flow in = flow out across a cut 

 

• M states  

– M-1 independent equations 

– pi=1 
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Outline for today 

Continuous time Markov-chains 

• Recall: continuous time Markov chains 

• Transient and steady state solutions 

• Balance equations – local and global 

• Pure Birth process – Poisson process as special case  

• Birth-death process as special case 

Discrete time Markov-chains 
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Pure birth process 

• Continuous time Markov-chain, infinite state space 
• Transitions occur only between neighboring states 

– State independent birth intensity: ii  ,

• No stationary solution 

• Transient solution: 

− pk(t)=P(system in state k at time t) 

− number of events (births) in an interval t 
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Pure birth process 
• Transient solution – number of events (births) in an interval (0,t] 

• Pure birth process gives Poisson process! – time between state 
transitions is Exp(λ) 
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1. Pure birth process with intensity  

2. The number of events in period (0,t] has Poisson distribution with 
parameter  

3. The time between events is exponentially distributed with parameter  

 tetXP  1)(

Equivalent definitions of Poisson process 

pure birth process 

number of events 

Poisson distribution 

time between events 

exponential 

previous slide 

previous lecture 

check in the binder 



18 EP2200 Queuing theory and teletraffic 
systems 

Pure death process 

• Continuous time Markov-chain, infinite state space 
• Transitions occur only between neighboring states 

– State independent death intensity: 
0,  ii 

• No stationary solution 

• Pure death process gives Poisson process until reaching state 0  

• Time between state transitions is Exp(µ) 

 

 

k-1 k k+1 
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Outline for today 

Continuous time Markov-chains 

• Recall: continuous time Markov chains 

• Transient and steady state solutions 

• Balance equations – local and global 

• Pure Birth process – Poisson process as special case  

• Birth-death process  

Discrete time Markov-chains 
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Birth-death process 
• Continuous time Markov-chain 
• Transitions occur only between neighboring states 

 

ii+1 birth with intensity λi 

                                                               modells population 
ii-1 death with intensity μi    (for i>0)   
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• State holding time – length of time spent in a state k 
– Until transition to states k-1 or k+1 
– Minimum of the times to the first birth or first deaths  minimum of two 

Exponentially distributed random variables: Exp(k+k) 
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B-D process - stationary solution 
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• Local balance equations, like for general Markov-chains 

• Stability: positive solution for p (since the MC is irreducible) 
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Markov-chains and queuing systems 
• Why do we like Poisson and B-D processes?  

How are they related to queuing systems? 
 
– If arrivals in a queuing system can be modeled as Poisson 

process  also as a pure birth process 
 

– If services in a queuing systems can be modeled with 
exponential service times  also as a (pure) death process 
 

– Then the queuing system can be modeled as a birth-death 
process 
 

λ 

μ μ 

λ 
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Summary – Continuous time Markov-chains 

• Markovian property: next state depends on the present state 
only 

• State lifetime: exponential 
• State transition intensity matrix Q 
• Stationary solution: pQ=0, or balance equations 
 
• Poisson process  

– pure birth process () 
– number of events has Poisson distribution, E[X]=t 
– interarrival times are exponential E()=1/ 

 
• Birth-death process: transition between neighboring states 

 

• B-D process may model queuing systems! 
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Discrete-time Markov-chains 
(detour) 

• Discrete-time Markov-chain: the time is discrete as well 

– X(0), X(1), … X(n), … 

– Single step state transition probability for homogeneous MC: 
P(X(n+1)=j | X(n)=i) = pij, n 

• Example 

– Packet size from packet to packet 

– Number of correctly received bits in a packet 

– Queue length at packet departure instants …  
(get back to it at non-Markovian queues) 
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• Transition probability matrix: 

– The transitions probabilities can be represented in a matrix 

– Row i contains the probabilities to go from i to state j=0, 1, …M 

• Pii is the probability of staying in the same state 
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• The probability of finding the process in state j at time n is denoted by: 

– pj
(n) = P(X(n) = j) 

– for all states and time points, we have: 

 

 

• The time-dependent (transient) solution is given by: 
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• Steady (or stationary) state exists if  

– The limiting probability vector exists 

– And is independent from the initial probability vector 

 

 

• Stationary state probability distribution is give by: 

 

 

 

• Note also: 

– The probability to remain in a state j for m time units has geometric 
distribution 

 

– The geometric distribution is a memoryless discrete probability 
distribution (the only one) 
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Summary 

• Continuous-time Markov chains 

• Balance equations (global, local) 

• Pure birth process and Poisson process 

• Birth-death process 

• Discrete time Markov chains 


