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1 Exercise 1.2

X is a random variable chosen from X; with probability ¢ and from X5 with
probability b. Calculate E[X] and ox for @ = 0.2 and b = 0.8. X; is an expo-
nentially distributed r.v. with parameter \; = 0.1 and X5 is an exponentially
distributed r.v. with parameter Ay = 0.02. Let the r.v. Y be chosen from
D, with probability a and from D, with probability b, where D; and D, are
deterministic r.v.s. Calculate the values D and D so that E[X] = E[Y] and
ox =O0y.

Solution: a) We directly apply the conditional expectation formula:

E[X] = aE[X,] + bE[Xa).

We can do this since the expectation is a raw moment — not central. The proof
is straightforward: we have
fx(x) = afx,(x) + bfx, () =
— E[X] = [T afx(@)de = o [} ofx, (x)dz + b [;° x fx,(z)dz =
= aF[X;] + bE[X5].

We then replace the given data
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We can not calculate the variance (or the standard deviation) in the same way,
since this is a central moment. Instead, we proceed with calculating the expected
square of the r.v. X, which is a raw moment:

E[X? = [T 2 fx(z)de = a [ 2% fx, (@)dz + b [ 22 fx, (x)de =
— aE[X?] + bE[XZ].

Replacing the data we get
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E[X] = agz + = 4040. (2)

0.022

Finally, we use the relation between the expectation, square mean and variance

0% = E[X?] — [E[X]]? = 4040 — 42% — ox = 47.70. (3)



b) We have E[Y] = ad; + bdy and E[Y?] = ad? + bd3. So the system of
equations becomes

0.2d; + 0.8ds = 42,

) ) (4)
0.2d2 + 0.8d2 = 4040

Solving this 2 by 2 non-linear system we obtain the solution. Notice that because
of the second order of the equation we may have more than one solutions.

2 Exercise 1.3

X is a discrete stochastic variable, p, = P(X = k) = ‘,’C—Te’“, k=0,1,2,... and
a is a positive constant.

a) Prove that >~ pr = 1.

b) Determine the z-transform (generating function) P(z) = 3.2, 2" px.

c) Calculate E[X], Var[X] and E[X(X —1)...(X —r 4+ 1)],r = 1,2,... with
and without using z-transforms.
Solution a) We have

—a —a —a _a
g Pk = —e T =e E — =e "’ =1.
k! k!
k=0 k=0 k=0

Notice this useful and well-known infinite series summation.
b) We replace the definition of the mass function and gradually have:

k! k!

= LaF = aF = (za)*
P(z) = E zkye_“ =e ) = E = e = gm177),
k=0 : k=0 k=0

c¢) First, we try without the z-transform, i.e. using the definitions in the
probability domain. We start from the third sentence, using the definition of
expectation:

Elg(x)] = / o) fx (2)dz (5)

—00

EX(X =1)(X —r+1)] = 522  k(k = 1) (k — 7 + Dpy =
= okl — 1) (k=7 + 1) %e ™ = 30 e =

(k=) .
— ,—a,T X a — s Ty—a,a _— T
=e % Zkzoi(kir)!—ae e*=a".

Then clearly, we have (by setting r = 1) E[X] = a! = a. And, finally,
Var[X] = E[X?|-[E[X]]? = E[X?]—a® = E[X(X -1)|+E[X]—a® = a*+a—a>.

We try, now, with the z-transform. We differentiate r times the definition of
the z-transform:
dT‘
dz"

P(z) =

ar & )
I Z 2o = Z k(k—1)...(k—r+1)2"""p
k=0 k=0



If we replace z = 1 we get

dd;p(z)}zz1 = BIX(X —1).(X —r +1)].

We, then, calculate,

d”‘
e P(z)}z_1 =a"e ("D = 4",

3 Exercise 1.4

X;’s are independent Poisson distributed random variables, thus, py = %%e_“i,
k=0,1,2,..., and each a;,7 = 1,2, ...,n is a positive constant. Give the proba-
bility distribution function of X =" .

Solution: This problem indicates the usefulness of the z-transform in the
calculation of the distribution of the sum of variables. We have proven that
the ZT of the sum of independent random variables is the product of
their individual z-transforms. Thus,

P(Z) _ H-Pz(z) _ Hefai(lfz) _ 62?:1 —ai(1-2) _ efoc(lfz),

i=1 i=1

where a = Y7 | —a;. This proves that the distribution is also Poisson with
parameter «, i.e. the sum of parameters. The proof is based on the uniqueness
of z-transform!. As a result, the distribution function will be

aF

px (k) = Fe’a

4 Exercise 1.5

X is a positive stochastic continuous variable with probability distribution func-
tion (PDF)
0, r <0,

F(z)=P(X <ux) :{ 1—e % z>0.

a) Give the probability density function f(z) = dF(z)/dx.

b) Give F(x) = P(X > z).

¢) Calculate the Laplace Transform f*(s) = E[e™*X] = [(* ™" f(x)dx.

d) Calculate the expected values m = E[X], E[X*], k = 0,1,2,..., the vari-
ance O'g(, the standard deviation ox and the coefficient of variation ¢ = o/m,
with and without the transform F*(s).

Solution: a) For the calculation of f(z) we just need to differentiate:

f(x) = dF(x)/dz = d(1 — e™ ") /dx = ae™".
b) The complementary PDF is simply given as

Fx(x)=P(X>z)=1-P(X <z)=1-Fx(z) = ",

Lor the 1-1 correspondence between the mass function and the ZT



c¢) Calculation of the Laplace Transform with simple integration

* _ —sz —ax — —z(s+a) _ a
f(s) = / flx /e dx a/e dz Pt
0 0 0

d) We proceed first, without the help of Laplace transforms, using the defi-
nition of the expectation

) = [7 2% f(z)da = [;° f(z)dx = 1.

= [ 2" f(z)de = [J° aFaem"dx = a=L [T aF (e ) dw =
= k‘foo Flemardy = E [ gk~ laem % dy = [° xk_lf(x)da: =
= Ep[xk-1.

This is a recursive formula that enables the calculation of any moment. We
have:
kk

—1
———E[X"? =
a a

— — |
kk 1..1E[X0]:Ek 1-~1=k7;
a a a a a a a

E[X*) = EE[X’H] = -
a

which gives, simply, E[X] = 1/a, for k = 1. The variance is calculated through

the usual formula, and the raw moments are taken from above:

=E[X? - [EX]]* = a% - ((11)2 =1/a’

so the standard deviation is simply the square root of the variance, 1/a, and
the coefficient of variation is 1. Notice that this is special for the exponential
distribution.

We try, now, with the help of the Laplace transforms.

koo kg —1)*ak!
EIX* = (-1)F i f5(s) = (1) % = G

We find this formula by differentiating k times the Laplace transform and re-
placing s = 0. The rest follows with simple replacement k = 1,2, ...

5 Exercise 1.6

X;’s are independent, exponentially distributed random variables with a mean
value of 1/a,a > 0,7 =1,2,...,n. Calculate P(X < z) and P(X > z) where

a) X = HliIl(Xth, ...,Xn),

b) X = max(Xl,XQ, ,Xn)

Solution: a) The key point in this exercise is the fact that the random
variables are independent (mutually independent). We gradually have:

P(X <) = P(min(Xy, X, ..., Xp,) < 2) = 1 = P(min(Xy, X5, ..., Xp,) > )
=1-PXi >z, Xo>u2,...X, >2)=1-[]", P(X; > x)
_I—HZ 1€ —ax :1_€—E;L=lax:1_€_nax



This shows that the minimum of exponentially distributed random variables is
also an exponential variable and its rate is the sum of the individual rates.
b) Similar calculations:

P(X <) = P(max(X1, Xp, .., Xp) S @) = P(Xy <2, Xp <., X, < 1)
= H?:l P(Xz < .’E) = H?:l(]- — eifw) = (]_ _ efaw)n.

Cleary, the variable X is, now, not exponential.



