CIRCULAR CONVOLUTION

Sequences of length N and the N-point DFT

$$FFT[x_1(n)] = X_1(k)$$

$$FFT[x_2(n)] = X_2(k)$$

$$FFT[x_3(n)] = X_3(k) = X_1(k)X_2(k)$$

 \iff

$$x_3(n) = \sum_{k=0}^{N-1} x_1(k) x_2((n-k)_{\text{mod } N}) = x_1(n) \otimes x_2(n)$$

Notation: $x_1(n) \otimes x_2(n)$, circular convolution of length N.

Digital Signal Processing

26

Lecture 3

LINEAR FILTERING USING FFT

The FFT algorithm can be used to calculate y(n) very **efficiently**.

Problem: X(k)H(k) corresponds to **circular convolution**.

Set $N \geq \operatorname{length}\{h(n)\}+\operatorname{length}\{x(n)\}-1$ to avoid aliasing from the circular convolution.

Long input sequences are divided into segments, using **overlap-save** or **overlap-add**.

OVERLAP-SAVE

Digital Signal Processing

28

Lecture 3

OVERLAP-ADD

Digital Signal Processing

29

Lecture 3

COMPUTATIONS

Computational complexity of overlap-save and overlap-add:

(filter length: M)

$$\frac{N\log_2(2N)}{N-M+1}$$
 multiplications per sample

Direct implementation:

 ${\cal M}$ multiplications per sample

Digital Signal Processing

30

Lecture 3

COMPUTATIONS (CONT.)

There is an optimal value of $N=2^p$ for each filter length M:

М	Ν	mult./sample
5	16	6.67
10	64	8.15
15	64	8.96
20	128	9.39
50	512	11.06
100	1024	12.18
1000	8192	15.94

COMPUTATIONS (CONT.)

1000

200

10°L

10³

Number of multiplications.

400 600 Filter length M

Optimal FFT length.

Digital Signal Processing

32

Lecture 3