GROUP DELAY AND LINEAR PHASE

Group Delay
$$\tau(f)=-\frac{1}{2\pi}\frac{\partial}{\partial f}\angle\{H(f)\}$$
 "=" $-\frac{\partial}{\partial\omega}\angle\{H(\omega)\}$

"time delay" for frequency components with frequency f.

Linear phase $\tau(f) = \tau_0$ constant \iff

$$H(f) = B(f)e^{-j(2\pi f\tau_0 + \phi)}$$

where B(f) is real valued \Longrightarrow all frequencies delayed equally much

Digital Signal Processing

33

Lecture 4

FIR LINEAR PHASE FILTERS

Assume FIR: $h(n) = \{h(0), h(1), \dots, h(M)\}$

General form for linear phase: $h(n) = (-1)^k h(M-n)$

 $\textbf{Delay:} \ \tau_0 = M/2$

Phase: $\phi=k\pi/2$

Four options:

Type 1: k=0, M even

Type 2: k=0, M odd

Type 3: k=1,M even

Type 4: k=1, M odd

FIR Approximations of Desired Filters

Alternative methods:

Frequency sampling: Match values, $H_{\mathrm{approx}}(f) = H_{\mathrm{desired}}(f)$ at f = k/M,

$$\begin{aligned} \text{Truncate impulse response: } h_{\text{approx}}(n) &= \begin{cases} h_{\text{desired}}(n) & |n| \leq M/2 \\ 0 & \text{otherwise} \end{cases} \\ \text{delay to make it causal: } h_{\text{approx}}(n) &= \begin{cases} h_{\text{desired}}(n-M/2) & 0 \leq n \leq M \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Problems: Both methods give large ripple in the frequency response.

Digital Signal Processing

35

Lecture 4

FIR APPROXIMATIONS USING WINDOWING

$$h_{\text{approx}}(n) = h_{\text{desired}}(n)w(n)$$

$$\iff$$

$$\begin{split} h_{\text{approx}}(n) &= h_{\text{desired}}(n) w(n) \\ \iff \\ H_{\text{approx}}(f) &= \int_{-1/2}^{1/2} H_{\text{desired}}(\nu) W(f-\nu) \; d\nu \end{split}$$

- Truncation corresponds to rectangular window
- Smoother window gives less ripple in frequency domain
- Popular choices: triangular (Bartlett), Hamming, Hann, Blackman, ...

RECTANGULAR WINDOW

DIFFERENT WINDOWS, TIME DOMAIN

DIFFERENT WINDOWS, FREQUENCY DOMAIN

Digital Signal Processing

39

Lecture 4