SPECTRUM

Deterministic Signals with Finite Energy (/5)

0o 2

Z x(n)efﬂﬂf"

n=—oo

Energy Spectrum: S,..(f) = | X(f)|* =

Deterministic Signals with Infinite Energy

N-1
DTFT of truncated signal: Xy (f) = Z x(n)e_j%f"
n=0

1

Power spectral density: P, (f) = lim —|XN(f)\2

N—oo N
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SPECTRUM
Stochastic Signals
Power spectral density:
T 1 2| _ _ s —j2rfk
Peat) = Jim e { XD | =+ = 3 relbe

where 7., (k) = E{z(n)z*(n — k)} is the covariance sequence of the

stationary stochastic process.
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SPECTRUM OF FILTERED SIGNAL

z(n) y(n)

el LTEh(n)

LTI system: y(n) = h(n) *x x(n)
Frequency response: Y (f) = H(f)X(f)

Energy spectral density: (lo-signals) Sy, (f) = |Y (f)|> = Sz (f)|H (f)|?
Power spectral density: (deterministic signals)
T 1 2 _ 2
Pyy(f) = lim —|Yx(H)P = Pea(DIH(S)|
Power spectral density: (stochastic signals)

P(f) = Jim {7} = PP
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SAMPLING

z(t) t = nT; zq(n

Xe(F) | A5 | Xu(h)

~—

Sampling frequency: F, = 7

Poisson’s summation formula (the sampling theorem):

Xuh=F Y XA(F-RF) =7 3 X, (%)

k=—o0 k=—o0
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SAMPLING STOCHASTIC SIGNALS

Covariance sequence:

Tegrqg(k) = To.z.(KTs)

Power Spectral Density:

SR —k
demd(f>:T Z P:vcxc (%)

5 k=—00
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NON-PARAMETRIC SPECTRAL ESTIMATION

Infinite (true) stochastic process: z(n),n=...,—-2,—-1,0,1,2,...

Available data: N samples of a single realization: = (n),
n=0,1,2,...,N -1

Problem formulation: Estimate the power spectral density of (1), given x x5 (1)
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NON-PARAMETRIC SPECTRAL ESTIMATION

Stochastic signals

Power spectral density:

Z Twm(k:)e*jfk

k=—oc0

N—o00

Pya(f) = lim E{%]XN(f)\Q} — ..

Estimate: Pyy(f)
2
i) directly: from )}"{CUN(TL)}’

i) indirectly: from F{7,.(k)}
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PERIODOGRAM

Directly:

0
P (—k) k=-1,-2,...,—N+1
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PERIODOGRAM, PROPERTIES

Bias: E{Ly.(f)} = Puu(f) * [Wr(f)? = Pra(f) + O(57)
biased but asymptotically unbiased

variance: E{(Py.(f) — Puu(f))?*} = PZ,(f) + O(%)
does not go to zero! == not a consistent estimate!

Cross variance (different frequencies, f1 # f2)

E{(me(fl) - me(fl))(Pwm(f2) - P:wc(f2))} = O(%)
estimates at different frequencies weakly correlated for large [NV
== not a smooth estimator!
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MODIFIED PERIODOGRAM

Window the data:

N-1 2
~ 1 1 '
P (D) = g W lwman ()} = 5 nzzo w(n)z(n)e 72mIm
1 N-—1
N I- i . —_— — 2
ormalization: U N n§zo|w(n)|

Properties: Changes the (9(%) term of the bias and variance.

Choice of window w(n): Trade-off between resolution and leakage, see Table 8.2
in Hayes.
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WINDOWING EFFECTS

Side-lobes cause leakage, i.e. energy appears outside the main lobe.
The width of main lobe determines the resolution capabilities.

Time domain Frequency domain

long window <— narrow main-lobe

short window <=  wide main-lobe
“sharp” edges <= large side-lobes

Different windows: trade-off between resolution and leakage.
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RESOLUTION LIMITS

A
Resolution if | fo — f1]| < W
0.5} 1 W — “3dB bandwidth”
° W 0 W
2 2
C__W(T ) | | LGN

0.5r

b re—

i f
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BARTLETT METHOD

Idea: Segment and average the data to decrease the variance.
Number of segments: K
Length of each segment: L

Total data length: N = LK

Segment k: zi(n) =x(kL+n),n=0,...,.L—1,k=0,..., K -1

1 5
A 2
PR(f) = T ;;)\Z |-7:{90k(”)}|1
Periodc:g;ram of
segment k
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BARTLETT METHOD, PROPERTIES

Compared to the periodogram:

Variance: decrease by factor K. @

Bias: o< T, — increase by factor K. ®

Resolution: decrease by factor K. @
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WELCH METHOD

Idea: Allow overlapping segments and window the data.
Number of segments: K

Length of each segment: L, LK > N.

Step between segment starts: [

Segment k: zi(n) = z(kD+n),n=0,...,L—-1,k=0,..., K —1

Temporal window: w(n),n =0,...,L —1

g
Z—Uf{w n)zy(n)}?

k=0 ~ v
Modified Periodogram
of segment k

Normalization: U = 7 Z|w(n) 2
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WELCH METHOD, PROPERTIES

Window choice: Ordinary trade-off between resolution and leakage. Gives

increased smoothness (averaging in the frequency domain).

Variance: Slightly lower than for Bartlett when using 50% overlap between
segments (L = 2D).
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BLACKMAN-TUKEY METHOD

Covariance sequence estimate: 7', (k)

Idea: 7, (k) is less reliable for large k. Window the correlation sequence to put

more emphasis on the most reliable values.

M-1
PET(f) = Flwlk)rew(k)} = Y w(k)fp(k)e 727
k=—M+1
Correlation window:
wk),n=-M+1,...,-1,0,1,..., M —1
w(k) = w(—k)
1/2
w(0) =1 <<= W(f)df =1
~1/2
Effective window length: M < N.
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BLACKMAN-TUKEY METHOD, PROPERTIES

Bias: E{PET(f)} = E{Pou(f)} * W(f) = Prx(f) * Witange(f) * W (f)

Variance: Decreases by approximately M /N , compared to the Periodogram.
Typically M < N.

Smoothness: Windowing creates smooth estimate.
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USING THE FFT

In practice: Use the FFT to calculate wa(f) in all the methods.

Frequency axis: P, (k) = Pm(f)J &, Where M is the length of the DFT.
M

f:
Zero padding: Use zero padding, M > NN, to get more points on the curve.

1800

- % - No zero padding
7N zeros

1600

1400

1200

1000
800
600
400

- - - Without zero padding

200

— With zero padding,

0

0.16 0.‘18 0.2 O.‘22 0.24 0.26 M - 8N
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