SPECTRUM

Deterministic Signals with Finite Energy (l_2)

Energy Spectrum:
$$S_{xx}(f) = |X(f)|^2 = \left|\sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi fn}\right|^2$$

Deterministic Signals with Infinite Energy

DTFT of truncated signal: $X_N(f) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi fn}$ Power spectral density: $P_{xx}(f) = \lim_{N\to\infty} \frac{1}{N} |X_N(f)|^2$

Digital Signal Processing 14 Lecture 5

SPECTRUM

Stochastic Signals

Power spectral density:

$$P_{xx}(f) = \lim_{N \to \infty} \mathsf{E}\left\{\frac{1}{N}|X_N(f)|^2\right\} = \dots = \sum_{k=-\infty}^{\infty} r_{xx}(k)e^{-j2\pi fk}$$

where $r_{xx}(k) = \mathsf{E}\{x(n)x^*(n-k)\}$ is the covariance sequence of the stationary stochastic process.

Digital Signal Processing 15 Lecture 5

SPECTRUM OF FILTERED SIGNAL

LTI system: y(n) = h(n) * x(n)

Frequency response: Y(f) = H(f)X(f)

Energy spectral density: (l₂-signals) $S_{yy}(f) = |Y(f)|^2 = S_{xx}(f)|H(f)|^2$

Power spectral density: (deterministic signals)

$$P_{yy}(f) = \lim_{N \to \infty} \frac{1}{N} |Y_N(f)|^2 = P_{xx}(f) |H(f)|^2$$

Power spectral density: (stochastic signals)

$$P_{yy}(f) = \mathsf{E} \lim_{N \to \infty} \left\{ \frac{1}{N} |Y_N(f)|^2 \right\} = P_{xx}(f) |H(f)|^2$$

Digital Signal Processing 16 Lecture 5

SAMPLING

$$\begin{array}{c} x_c(t) \\ X_c(F) \end{array} \xrightarrow{t = nT_s} x_d(n) \\ \xrightarrow{} \\ X_d(f) \end{array}$$

Sampling frequency: $F_s = \frac{1}{T_s}$

Poisson's summation formula (the sampling theorem):

$$X_d(f) = F_s \sum_{k=-\infty}^{\infty} X_c((f-k)F_s) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_c\left(\frac{f-k}{T_s}\right)$$

Digital Signal Processing

SAMPLING STOCHASTIC SIGNALS

Covariance sequence:

$$r_{x_d x_d}(k) = r_{x_c x_c}(kT_s)$$

Power Spectral Density:

$$P_{x_d x_d}(f) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} P_{x_c x_c} \left(\frac{f-k}{T_s}\right)$$

Digital Signal Processing

18

Lecture 5

NON-PARAMETRIC SPECTRAL ESTIMATION

Infinite (true) stochastic process: x(n), n = ..., -2, -1, 0, 1, 2, ...Available data: N samples of a single realization: $x_N(n)$, n = 0, 1, 2, ..., N - 1

Problem formulation: Estimate the power spectral density of x(n), given $x_N(n)$

Digital Signal Processing

NON-PARAMETRIC SPECTRAL ESTIMATION

Stochastic signals

$$P_{xx}(f) = \lim_{N \to \infty} \mathsf{E}\left\{\frac{1}{N} \left|X_N(f)\right|^2\right\} = \dots = \sum_{k=-\infty}^{\infty} r_{xx}(k)e^{-jfk}$$

Estimate: $\hat{P}_{xx}(f)$

- i) directly: from $\left|\mathcal{F}\{x_N(n)\}\right|^2$
- ii) indirectly: from $\mathcal{F}\{\hat{r}_{xx}(k)\}$

Digital Signal Processing	42	Lecture 5
Bigital Bigital Freedotoling	14	Loolaroo

Periodogram

Directly:

Indirectly:

$$\hat{P}_{xx}(f) = \frac{1}{N} \left| \mathcal{F}\{x_N(n)\} \right|^2 = \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n) e^{-j2\pi f n} \right|^2$$

$$\hat{P}_{xx}(f) = \mathcal{F}\{\hat{r}_{xx}(k)\} = \sum_{k=-N+1}^{N-1} \hat{r}_{xx}(k)e^{-j2\pi fk}$$

if

$$\hat{r}_{xx}(k) = \begin{cases} \frac{1}{N} \sum_{n=0}^{N-k-1} x(n+k) x^*(n) & k = 0, 1, \dots, N-1 \\ \hat{r}_{xx}^*(-k) & k = -1, -2, \dots, -N+1 \end{cases}$$

Digital Signal Processing

PERIODOGRAM, PROPERTIES

Bias: $E\{\hat{P}_{xx}(f)\} = P_{xx}(f) * |W_R(f)|^2 = P_{xx}(f) + O(\frac{1}{N})$ biased but asymptotically unbiased

Variance: $E\{(\hat{P}_{xx}(f) - P_{xx}(f))^2\} = P_{xx}^2(f) + O(\frac{1}{N})$ does not go to zero! \Longrightarrow not a consistent estimate!

Cross variance (different frequencies, $f_1 \neq f_2$) $E\{(\hat{P}_{xx}(f_1) - P_{xx}(f_1))(\hat{P}_{xx}(f_2) - P_{xx}(f_2))\} = O(\frac{1}{N})$ estimates at different frequencies weakly correlated for large N \implies not a smooth estimator!

Digital Signal Processing 44 Lecture 5

MODIFIED PERIODOGRAM

Window the data:

$$\hat{P}_{xx}^{M}(f) = \frac{1}{NU} \left| \mathcal{F}\{w(n)x_{N}(n)\} \right|^{2} = \frac{1}{NU} \left| \sum_{n=0}^{N-1} w(n)x(n)e^{-j2\pi f n} \right|^{2}$$

formalization:
$$U = rac{1}{N} \sum_{n=0}^{N-1} \lvert w(n)
vert^2$$

Properties: Changes the $\mathcal{O}(\frac{1}{N})$ term of the bias and variance.

Choice of window w(n): Trade-off between resolution and leakage, see Table 8.2 in Hayes.

Digital Signal Processing

45

WINDOWING EFFECTS

Side-lobes cause **leakage**, i.e. energy appears outside the main lobe. The width of **main lobe** determines the **resolution** capabilities.

	Time domain		Frequency domain	
	long window	\iff	narrow main-lobe	
	short window	\iff	wide main-lobe	
	"sharp" edges	\iff	large side-lobes	
Different windows: trade-off between resolution and leakage .				

Digital Signal Processing

46

Lecture 5

RESOLUTION LIMITS

BARTLETT METHOD

Idea: Segment and average the data to decrease the variance.

Number of segments: K

Length of each segment: L

Total data length: N = LK

Segment k: $x_k(n) = x(kL+n), n = 0, ..., L-1, k = 0, ..., K-1$

$$\hat{P}^B_{xx}(f) = \frac{1}{K} \sum_{k=0}^{K-1} \underbrace{\frac{1}{L} \left| \mathcal{F} \left\{ x_k(n) \right\} \right|^2}_{\substack{\text{Periodogram of segment } k}}$$

Digital Signal Processing

48

Lecture 5

BARTLETT METHOD, PROPERTIES

Compared to the periodogram: **Variance:** decrease by factor K. \bigcirc **Bias:** $\propto \frac{1}{L}$, — increase by factor K. \bigcirc **Resolution:** decrease by factor K.

Digital Signal Processing

WELCH METHOD

Idea: Allow overlapping segments and window the data.

Number of segments: K

Length of each segment: L, LK > N.

Step between segment starts: D

Segment k: $x_k(n) = x(kD+n), n = 0, ..., L-1, k = 0, ..., K-1$ Temporal window: w(n), n = 0, ..., L-1

$$\hat{P}_{xx}^{W}(f) = \frac{1}{K} \sum_{k=0}^{K-1} \underbrace{\frac{1}{LU} \left| \mathcal{F} \left\{ w(n) x_k(n) \right\} \right|^2}_{\text{Modified Periodogram}}$$

of segment \vec{k}

Normalization:
$$U = \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2$$

Digital Signal Processing

50

Lecture 5

WELCH METHOD, PROPERTIES

Window choice: Ordinary trade-off between resolution and leakage. Gives increased smoothness (averaging in the frequency domain).

Variance: Slightly lower than for Bartlett when using 50% overlap between segments (L = 2D).

BLACKMAN-TUKEY METHOD

Covariance sequence estimate: $\hat{r}_{xx}(k)$

Idea: $\hat{r}_{xx}(k)$ is less reliable for large k. Window the correlation sequence to put more emphasis on the most reliable values.

$$\hat{P}_{xx}^{BT}(f) = \mathcal{F}\{w(k)\hat{r}_{xx}(k)\} = \sum_{k=-M+1}^{M-1} w(k)\hat{r}_{xx}(k)e^{-j2\pi fk}$$

Correlation window:

$$w(k), n = -M + 1, \dots, -1, 0, 1, \dots, M - 1$$
$$w(k) = w(-k)$$
$$w(0) = 1 \Longleftrightarrow \int_{-1/2}^{1/2} W(f) df = 1$$

Effective window length: $M \leq N$.

Digital Signal Processing 52 Lecture 5

BLACKMAN-TUKEY METHOD, PROPERTIES

Bias: $E\{\hat{P}_{xx}^{BT}(f)\} = E\{\hat{P}_{xx}(f)\} * W(f) = P_{xx}(f) * W_{triangle}(f) * W(f)$

Variance: Decreases by approximately M/N, compared to the Periodogram. Typically $M \ll N.$

Smoothness: Windowing creates smooth estimate.

Digital Signal Processing

USING THE FFT

In practice: Use the FFT to calculate $\hat{P}_{xx}(f)$ in all the methods. Frequency axis: $\hat{P}_{xx}(k) = \hat{P}_{xx}(f) \Big|_{f=\frac{k}{M}}$, where M is the length of the DFT. Zero padding: Use zero padding, M > N, to get more points on the curve.

