EG2080 Monte Carlo Methods in Engineering

SIMULATION DESIGN

PROJECT ASSIGNMENT

- Problems

- Formulate a simulation problem.
 Notice that it is more important that you have an interesting simulation problem than that your problem is realistic.
- Analyse possible simulation methods.
- Test suggested simulation methods.
- Write report.

PLANNING A MONTE CARLO SIMULATION

- Overview of the simulation problem
- Objective
- Define symbols
- Formulate model
- Choose simulation method
- Testing and verification

OVERVIEW OF THE SIMULATION PROBLEM

- Try to write a short description of the system to be studied.
- What is the general background of the problem, i.e., why is it interesting to study this problem?
- Describe related work, i.e., if the problem has been studied by other authors.
- Summarise how the system is modelled and provide references to the theory necessary to understand the model.

OBJECTIVE

- Which outputs are of interest?
- How detailed results are required?
 - Expectation value
 - Variance
 - Probability distribution
- Which accuracy is necessary?

DEFINE SYMBOLS

- Try to list all the variables and parameters that you are going to need in to describe your system.
- Use symbols that are as clear as possible.
- Try to follow the convention that random variables are denoted by capital letters and use lower-case letters for parameters.
- Sort the symbols under different headings as for example Inputs, Model parameters and Outputs.

Cf. example 1.

FORMULATE MODEL

- List and motivate all assumptions that you have made, for example if you have neglected some properties of your system.
- Describe the equations used to calculate the output values given a specific set of input values.

It is not necessary to include detailed descriptions of well-known algorithms; you can refer to relevant literature or include the background theory in an appendix.

FORMULATE MODEL

- Test the model thoroughly, i.e., make sure that you get correct output values for some typical scenarios.
- Pay specific attention to possible exceptions (such as for example division by zero)!

SIMULATION METHOD

The choice of simulation method is not only depending on the characteristics of the system you are simulating, but also on the reason why you are studying it.

- A specific simulation problem is a simulation problem that only has to be solved once.
- A general simulation problem refers to a class of systems with the same basic structure, but which can vary in size, parameter values, etc., and which therefore will be solved repeatedly.

- Specific simulation problem

- Preparing a smart simulation method may take longer time than the reduction in simulation time compared to simple sampling.
- Hence, it is better to use a straight-forward, reliable simulation method (such as simple sampling or correlated sampling) and to collect a very large number of samples.
- Complementary random numbers and dagger sampling can be useful.

10

SIMULATION METHOD

General simulation problem

- Since the same simulation method can be applied more than once, it is probably worthwhile to spend some time on developing an efficient simulation method.
- Investigate if there are any predictable correlations between the input values and the output values.
- Try to formulate a simplified model of the system; the simplified model can then be used as a control variate.

SIMULATION METHOD

General

- Which stopping rule should be used?
- Which batch size is reasonable?
- Which variance reduction techniques are applicable?
- Is it possible to combine different variance reduction techniques?

SIMULATION METHOD

Complementary random numbers

- Have you identified any inputs which if negatively correlated will result in negative correlations for one or more outputs?
- If no such inputs exist in the original problem, can you add extra variables, which is a direct function of the original inputs, but which is also are correlated somehow to the output values?

Cf. examples 17 and 18.

SIMULATION METHOD

Dagger sampling

- Dagger sampling is an obvious possibility whenever you have two-state input variables.
- However, consider alternative methods, such as combining several two-state variables in a multi-variate discrete distribution, or to apply importance sampling.
- · Which dagger cycle length is optimal?

SIMULATION METHOD

Control variate

- If a control variate is available—use it!
- However, the control variate method is changing the population which we are sampling; other scenarios are now more important compared to if only the original system is sampled

 Modify importance sampling function or stratification?

SIMULATION METHOD

Correlated sampling

- If you need to compare several systems—use correlated sampling!
- However, if the inputs have different probability distributions, it might be impossible to use correlated sampling in combination with importance sampling or stratified sampling.
- If the systems have different values of critical parameters, it might be necessary to consider both systems when designing importance sampling functions and stratification.

15

SIMULATION METHOD

Importance sampling

- Investigate if there is a control variate which can be used to design an importance sampling function.
- Consider the possibility to focus the simulation of scenarios which have low probability but large impact on E[X].

SIMULATION METHOD

Stratified sampling

- Investigate if there is a control variate which can be used to design strata.
- Investigate if the scenarios with similar output values can be identified using a strata tree.
- Which sample allocation method is optimal?

17

10

TESTING AND VERIFICATION

- Test your simulation methods on a smallscale problem such that it is possible to verify that the simulation provides correct results.
 - It is convenient if it possible to calculate E[g(Y)] using analytical calculations.
 - Try to keep the main features of the system.
- Test your simulation methods on large-scale problems.
 - Are the results reasonable?
 - Estimate the variance of the expectation value for different methods.

PROJECT ASSIGNMENT

- Report

Sections marked * are optional.

- Introduction
 - Background
 - Problem definition
 - *Related research
 - Overview of the report
- Modelling
 - Assumptions and limitations
 - Symbols
 - Mathematical model

19

PROJECT ASSIGNMENT

- Report

- Variance reduction techniques

 Analyse the possibility to use the variance reduction techniques described in this course.
- Case study
 - System description
 - Simulation method
 - Results

PROJECT ASSIGNMENT

- Report

- Conclusions
 - General conclusions
 - *Conclusions from the case study
 - *Future work
- References

22