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1 Exercise 5.1

In a computer network a link has a transmission rate of C bit/s. Messages arrive
to this link in a Poisson fashion with rate λ messages per second. Assume that
the messages have exponentially distributed length with a mean of 1/µ bits and
the messages are queued in a FCFS fashion if the link is busy.
a) Determine the minimum required C for given λ and µ such that the average
system time (service time + waiting time) is less than a given time T0.

Solution: System Description

• Single communication link: C bits per second

• Poisson arrivals: λ messages per second

• Exponential Service times: E[T ] = E[X]/C = 1/(µC), so the exponential
rate is µC.

• First Come First Served policy

• Infinite Queue1

This is a typical M/M/1 System. We see the system diagram in Fig. 1.
We first derive the state distribution (steady-state) of this system through the
solution of the balance equations. We define ρ = λ/(µC). For a no-loss system,
ρ is the OFFERED and, at the same time, the ACTUAL load.

λP0 = (µC)P1 → P1 = ρP0

λP1 = (µC)P2 → P2 = ρP1 = ρ2P0

λP2 = (µC)P3 → P3 = ρP2 = ρ3P0

.............................................................................
λPk = (µC)Pk+1 → Pk+1 = ρPk = ρkP0

........................................

Then, we calculate the P0 through the normalization equation:

∞∑
k=0

Pk = 1→
∞∑
k=0

ρkP0 = 1→ P0

∞∑
k=0

ρk = 1→ P0 ·
1

1− ρ
= 1→ P0 = 1− ρ.

1If no buffer capacity is mentioned, we always assume that this is infinite.
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Figure 1: System diagram for the M/M/1 chain of exercise 5.1

Finally, the state distribution is given as

Pk = (1− ρ)ρk.

We, now, derive the average number of messages in the system, using the state
distribution:

N =
∑∞
k=0 kPk =

∑∞
k=0 k(1− ρ)ρk = (1− ρ)ρ

∑∞
k=0 kρ

k−1 =

= (1− ρ)ρ
∑∞
k=0

dρk

dρ = (1− ρ)ρ
d(

∑∞
k=0 ρ

k)
dρ = (1− ρ)ρd(1/(1−ρ))

dρ = ρ
1−ρ .

In order to solve the first question we can use the LITTLE’s formula:

N = λeffE[Ttotal]→ E[Ttotal] =
N

λ
=
ρ/(1− ρ)

λ
=
λ/(µC)/(1− λ/(µC))

λ
,

since λeff = λ, so, finally,

E[Ttotal] =
1

(µC)− λ
.

The minimum required C is determined by:

1

µC − λ
≤ T0 → µC − λ ≥ T−1

0 → C ≥ λ+ T−1
0

µ
.

2 Exercise 5.5

Consider a queuing system with a single server. The arrival events can be
modeled with Poisson distribution, but two customers arrive at the system at
each arrival event. Each customer requires an exponentially distributed service
time.

1. Draw the state diagram

2. Determine pk using local balance equations

3. Let P (z) =
∑∞
k=0 z

kpk. Calculate P (z) for the system. Note, that P (z)
must be finite for |z| < 1, and we know P (1) = 1.
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Figure 2: System diagram for the M/M/1 chain of exercise 5.5

4. Calculate the mean number of customers in the system with the help of
P (z) and compare it with the one of the M/M/1 system.

Solution: The system can be described by an M/M/1 model, since there is a
single server, the service times are exponential service and the arrival process
is Poisson. We must notice, however, that this Poisson Process models arrival
events, but the events consist of two customer arrivals. (The departure events
are still one-by-one, though.)

As always, for a Markovian System we must guarantee that all transitions
are exponential. We define the usual state space: Sk : k customers in the
system. Then, the state diagram is straightforward. Special care must be taken
on determining the transitions and rates from state to state.

Departure rate = µ

Arrival Event rate = λ

Clearly, the average customer arrival rate is 2λ and is NOT Poisson! What IS
Poisson is the group arrival rate. We also DEFINE ρ = λ

µ . This is neither the
offered nor the actual load. We just use ρ to define this fraction.
The system diagram is given in Fig. 2.
Local Balance Equations:

λP0 = µP1

λPk−2 + λPk−1 = µPk, k ≥ 2

We can go ahead and solve them numerically. Alternatively, we can use
the ZT methodology, since we only want to compute the average number of
customers.

We consider the parametric local balance equation:

µPk = λPk−1 + λPk−2 →

→
∑∞
k=2 z

kµPk =
∑∞
k=2 z

k(λPk−1 + λPk−2)

→ µ(P (z)− zP1 − P0) =
∑∞
k=2 λz

kPk−1 +
∑∞
k=2 λz

kPk−2

→ µ(P (z)− zP1 − P0) = λz
∑∞
k=2 λz

k−1Pk−1 + λz2
∑∞
k=2 λz

k−2Pk−2

→ µ(P (z)− zP1 − P0) = λz(P (z)− P0) + λz2P (z)

3



We solve the equation with respect to P (z)

P (z) =
µP0 + µzP1 − λzP0

µ− λz − λz2
=
P0 + zP1 − ρzP0

1− ρz − ρz2
. (1)

We need to apply two conditions that HOLD, in order to determine the unknown
terms above. The first condition comes from the balance equation that we did
not consider. We replace P1 = ρP0 in (1), and obtain:

P (z) =
P0

1− ρz − ρz2
. (2)

The second condition comes from the NORMALIZATION in the probability or
in the Z-domain:

∞∑
k=0

Pk = 1, or, P (z = 1) = 1.

Replacing that in (2) we obtain P0 = 1− 2ρ, so finally

P (z) =
1− 2ρ

1− ρz − ρz2
(3)

Finally, we need to compute the mean number of customers. We have

N =

[
dP (z)

dz

]
z=1

.

Proof:[
dP (z)

dz

]
z=1

=

[
d
∑∞
k=0 z

kPk
dz

]
z=1

=

[ ∞∑
k=0

kzk−1Pk

]
z=1

=

∞∑
k=0

kPk = N.

So, this is what we will do. We differentiate the derived ZT in (3):

dP (z)

dz
=

(−1)(1− 2ρ)(−ρ− 2ρz)

(1− ρz − ρz2)2

Replacing z = 1 we obtain

N =
3ρ

1− 2ρ
=

3λ

µ− 2λ
.

The typical M/M/1 system with the same average customer arrival rate (2λ)
and service rate (µ) has NM/M/1 = ρ

1−ρ , where ρ is its offered load, and is equal

to ρ = 2λ/µ. So, finally,

NM/M/1 =
2λ

µ− 2λ

so it is different, and, actually, less. Why?
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Figure 3: System diagram for the M/M/1 chain of exercise 5.6

3 Exercise 5.6

A queuing system has one server and infinite queuing capacity. The number of
customers in the system can be modeled as a birth-death process with λk = λ
and µk = kµ, k = 0, 1, 2, ... thus, the server increases the speed of the service
with the number of customers in the queue. Calculate the average number of
customers in the system as a function of ρ = λ/µ.

Solution: The system is an M/M/1 queue, since it has infinite buffer, 1
server, and Markovian arrival and departure process. However, as we can see, it
is not a typical M/M/1 case, as the service rates depend on the current system
state. The system diagram is shown in Fig. 3. We need to solve the system of
balance equations:

λP0 = µP1 → P1 = ρP0

λP1 = 2µP2 → P2 = 1
2ρP1 = 1

2ρ
2P0

λP2 = 3µP3 → P3 = 1
3ρP2 = 1

2·3ρ
3P0

.........................................................................
λPk−1 = kµPk → Pk = 1

kρPk−1 = ... = 1
k!ρ

kP0

.........................................................................∑∞
k=0 Pk = 1 (normalization)

From the last general equation and the normalization equation we obtain
the state distribution:

∞∑
k=0

ρk

k!
P0 = 1→ P0e

ρ = 1→ P0 = e−ρ.

so finally, for each k

Pk =
ρk

k!
e−ρ

so the state distribution is POISSON! Then, we can calculate the average num-
ber of customers from the state distribution

N =

∞∑
k=0

kPk = ρ
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or simply say that the average is ρ, from the Poisson distribution.
From LITTLE we can, also, calculate the average system time

E[Ttotal] =
N

λ
=

1

µ
.

This means that the arriving customers only stay in the system for an average
time equal to the service time!2

4 Exercise 5.7

Customers arrive to a single server system in groups of 1,2,3 and 4 customers.
The number of customers per group is i.i.d. There are in total 4 places in the
system. If a group of customers does not fit into the system, none of the members
of the group joins the queue. 10% of the customers arrive in a group of 1, 20%
of the customers arrive in groups of 2, 30% in a group of 3 and 40% in a group
of 4 customers. The average number of arriving customers is 75 customers
per hour, the interarrival time between groups is exponentially distributed. The
service time is exponentially distributed with a mean of 0.5 minutes.

1. Give the Kendall notation of the system and draw the state transition
diagram.

2. Calculate the average number of customers in the queue and the mean
waiting time per customer.

3. Calculate the probability that the system is full and the probability that a
customer arriving in a group of k customers can not join the queue.

4. Calculate the probability that an arriving customer in general can not join
the queue and the probability that an arriving group of customers can not
join the queue.

5. What is the average waiting time for a customer arriving in a group of 3
customers?

Solution: This is a very interesting problem that reveals the problems when
the arriving process is complex and not straightforward so it must be derived.

First, we give the Kendall notation of the system. We have:

• Exponential GROUP inter-arrival times, so the arrival time will be Marko-
vian.3

• The service times are exponentially distributed

• The system has a single server

• The total capacity is 4

2This is equivalent to the case where there is no queue and each customer is served in
parallel with the others, so actually this system is equivalent to an M/M/∞ system!

3It is our task to find an appropriate state space where the event arrival process is Poisson.
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Consequently, the Kendall notation is M/M/1/4.
We must draw the state transition diagram. We consider the typical state space
where Sk means ”k customers in the system”. As a result the system has 5
states in total. The service rates are always the same, with

µ =
1

E[Ts]
=

1

0.5/60
= 120h−1.

The difficulty lies in deriving the arrival transition rates. We are given
that the number of customers per group is i.i.d. We assume, naturally, that
the GROUP arrival process is HOMOGENEOUS, that is, groups arrive in each
state with the same rate! Also, since the inter-arrival times between GROUP ar-
rivals are exponential we conclude that the GROUP arrivals is a Poisson process.

We are given that the number of customers per group is an i.i.d. process,
but we are NOT given the distribution. Let

q1, q2, q3, q4

denote the probabilities that a random arriving group contains 1,2,3,4 customers
respectively.

Let λG denote the Poisson group arrival rate. Then, the individual rates
for each groups is ALSO a Poisson process, based on the Poisson split property,
with rates

λGq1, λGq2, λGq3, λGq4.

For any i = 1, 2, 3, 4,
λG · qi

defines the (average) rate of arrivals for group’s of type i, and, consequently,

λG · qi · i

defines the (average) rate of arrivals of customers belonging to group of type i.
Based on the given data from the exercise regarding the ratio of customers

arriving in any of the groups, we obtain the following equations:

λGq1 · 1 = 10% · 75

λGq2 · 2 = 20% · 75

λGq3 · 3 = 30% · 75

λGq4 · 4 = 40% · 75

From the above it is clear that q1 = q2 = q3 = q4 → qi = 1
4 , ∀i = 1, 2, 3, 4.

Finally, using any of the above equations we compute the group arrival rate:

λG = 30 groups / hour

We can now complete the state diagram (Fig. 4). Then, we solve the LOCAL
balance equations, to define the state probabilities.
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Figure 4: System diagram for the M/M/1 chain of exercise 5.6

We can compute BOTH the average number of customers in the system, and
the average number of customers in the queue:

Nqueue = 1 · P2 + 2 · P3 + 3 · P4

N = 1 · P1 + 2 · P2 + 3 · P3 + 4 · P4

For the average waiting time, we could apply the LITTLE result. For that
we need the effective customer arrival rate, which is different from the nominal,
since there are losses in the system.

It is important to notice again that the system is HOMOGENEOUS in group
arrivals but not in customer arrivals.

We have

λeff = P0λG·(q1+2q2+3q3+4q4)+P1λG·(q1+2q2+3q3)+P2λG·(q1+2q2)+P3λG·(q1).

Then, from LITTLE we compute first the system time, N = λeffE[T ], and
then the average waiting time will be W = E[T ]− E[Ts].

The probability that the system is full (as seen by an independent observer)
is simply P4.

The probability that a customer of a group k does not join the queue is, actu-
ally, the probability that the whole particular group does not join the queue.
Since the system is homogeneous in group arrivals (a random group SEES state
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distribution),

Pr(a random group 1 is blocked) = P4

Pr(a random group 2 is blocked) = P4 + P3

Pr(a random group 3 is blocked) = P4 + P3 + P2

Pr(a random group 4 is blocked) = P4 + P3 + P2 + P1

An arriving customer in general, belongs to groups 1,2,3,4 with probabilities
10%, 20%, 30% and 40%. So given these probabilities, he follows the group
blocking probabilities:

Pr(a random customer is blocked) =

= 40% · (P1 + P2 + P3 + P4) + 30% · (P2 + P3 + P4) + 20%2 · (P3 + P4) + 10% · P4

An arriving group of customers is blocked with probability

Pr(a random group is blocked) =

=
∑4
i=1 Pr{a random group has i customers} · Pr{a random group i is blocked} =

= P4 + P3 · 3/4 + P2 · 1/2 + P1 · 1/4.

A customer that arrives in group of 3 customers MEANS that the arrived
group sees either state 0 or state 1, otherwise there is no mean of WAITING
time, since the group is rejected. The arrivals are homogeneous in groups, so
the groups see state 0, 1 with probabilities P0, P1, respectively. So

W 3 =
P0

P0 + P1
·W 0

3 +
P1

P0 + P1
·W 1

3

where the two waiting times are

W 0
3 =

1

3
(0.5 + 1 + 0), W 1

3 =
1

3
(0.5 + 1 + 1.5)
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