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1 Exercise 6.6

There are K computers in an office, and a single repairman. Each computer
breaks down after an exponentially distributed time with parameter α. The re-
pair takes an exponentially distributed amount of time with parameter β. Only
one computer is being repaired at a time, computers break down independently
from the repair process, and repair times and lifetimes of the computers are
independent.

1. What is the probability that i computers are working at time t?

2. What is the average failure rate (i.e. the average number of computers
that fail per time unit)?

3. What is the percentage of time a repairman is busy?

4. What is the percentage of time when all computers are out-of-order (bro-
ken)?

5. How many computers should we have if we would like to have K computers
to work on average?

Solution:

By reading the first question of this problem we already realize what the desired
State Space could be. We try with the obvious selection:

State Si : i computers working, i = 0, 1, 2, ...,K

The K computers in the system is the population size of our model. And it is,
clearly, finite. The single repairman represents the servers in our model (1).
Each computer needs an exponentially distributed time for repair, so the service
rates in our model are exponential. Finally, each computer breaks-down after
an exponentially distributed time (after its repair) so the arrival process in the
system is, also, Markovian.

To summarize:

• A break-down of a computer is an ”arrival”
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Figure 1: System diagram for exercise 6.6

• A repair of a computer is a ”departure” or a ”service”

Based on the above, we depict the diagram in Fig. 1. We denote γ = β/α. We
draw the Balance Equations:

βP0 = αP1 → P1 = β
αP0 = γP0,

βP1 = 2αP2 → P2 = β
2αP1 = 1

2γP1 = 1
2γ

2P0,

βP1 = 3αP2 → P2 = β
3αP1 = 1

3γP1 = 1
2·3γ

3P0,

...............................................................

βPK−1 = KαPK → PK = β
KαPK−1 = .... = 1

K!γ
KP0.

(1)

From the above it is clear that the probability of an arbitrary state Si is

Pi =
γi

i!
P0, i = 0, 1, 2, ...,K (2)

From the above and the normalization equation we derive the P0:

K∑
j=1

Pj = 1→
K∑
j=1

1

j!
γjP0 = 1→ P0 =

1∑K
j=1

1
j!γ

j
. (3)

P0 gives the probability that all computers are out of order. In addition, the
probability that i computers are working (in the steady-state) is given by:

Pi =
γi

i!
∑K
j=1

γj

j!

. (4)

The repairman is busy in all states, except state SK , where all computers are
working properly. So the percentage of time the repairman is busy, will be:

Prep. busy = 1− PK . (5)

Next, we want to calculate the average failure rate (λfail rate). We notice that
the failure rate depends on the state of the system. For example, the failure
rate in state SK is Kα, while, in case S0 is it zero! We use the conditional
expectation calculation to compute it:

λfail rate =

K∑
j=1

j · αPj = α

K∑
j=1

j · Pj , (6)
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where Pj is given above. The average number of working computers will be
calculated based on the state probability distribution, that is:

N =

K∑
i=1

i · Pi =

K∑
i=1

i · γi

i!
∑K
j=1

γj

j!

(7)

We would like to have a system withK computers working (on average). Assume
the required number of computers is M . Then M can be found as the lowest
integer that satisfies the inequality:

N ≥ K →
M∑
i=1

i · γi

i!
∑M
j=1

γj

j!

≥ K. (8)

We can find the require M by trial-and-error.
Extra question: What is the probability that a broken computer can
not be repaired immediately?
This probability can be found by taking the ratio of the rate of computer break-
downs that can not be served immediately, over the total average rate of com-
puter break-downs:

λW =

∑K−1
j=1 αjPj∑K
j=1 αjPj

(9)

2 Exercise 8.6

In a kitchen dormitory corridor there are two hobs for cooking and 3 places
on the sofa. There are 8 students living in the corridor, each of them goes on
average every 1/α hours to the kitchen to cook (if he is not cooking already),
the inter-arrival time is exponentially distributed. If on arrival the 2 hobs are
occupied, the student looks for a place on the sofa. If the sofa is occupied as well,
the student goes back to his room and tries again at a later time. Students spend
an exponentially distributed amount of time cooking with mean 1/β. α = 0.5
hours, β = 1 hours.

1. Draw the state transition diagram

2. Calculate the mean waiting time of the students

3. Calculate the ratio of time the kitchen is completely full, e.g. a student
arriving has to go back to his room.

4. Calculate the probability that a student finds the kitchen completely full

5. Calculate the probability that a student has to wait more than 2 hours
(supposing that he can sit down in the kitchen)

Solution:
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Figure 2: System diagram for exercise 8.6

This is a complex problem that discusses all important matters in the Marko-
vian systems with finite population size. It is, perhaps, easy to choose the state
space; it could, clearly, be the number of places occupied by students at some
point in time, either in the kitchen counter (hobs) or the kitchen sofa:

State Space: Sk, k positions occupied, k = 0, 1, ..., 5. (10)

The population of the system is the number of students (8). The number of
servers is the number of hobs (2) and the number of queuing positions is the
number of places on the sofa (3). The inter-arrival times between student ar-
rivals at the kitchen is exponentially distributed and the rate depends on the
remaining number of students that are still at their rooms (not already cooking
or waiting at the sofa). The service times are the cooking times and are also
exponentially distributed. Consequently, the system is Markovian, with Kendall
notation: M/M/2/5/8. The system diagram is depicted in Fig. 2. We define:

ρ =
α

β
=

1

2
.

Notice that is not the offered load at the system. We draw the balance equa-
tions:

8αP0 = βP1 → P1 = 8ρP0,

7αP1 = 2βP2 → P2 = 7
2ρP1 = 28ρ2P0,

6αP2 = 2βP3 → P3 = 3ρP2 = 84ρ3P0,

5αP3 = 2βP4 → P4 = 5
2ρP3 = 210ρ4P0,

4αP4 = 2βP5 → P5 = 2ρP2 = 420ρ5P0

(11)

Applying the normalization equation:

5∑
k=0

Pk = 1, (12)

we calculate the values of the state probabilities.

Through the state probabilities we calculate, first, the percentage of time the
kitchen is completely full, simply:

Pfull = P5. (13)

Now, since the system has finite population, the arrival rates depend on the
state, and, so the probability that a random student finds the system (kitchen)
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full is NOT equal to P5. The average student arrival rate is calculated using
the conditional expectation and taking into account the different arrival rates
in each state:

λ =

5∑
k=0

λk · Pk, (14)

where λk is the arrival rate at state Sk. Based on the diagram we obtain:

λ = 8αP0 + 7αP1 + 6αP2 + 5αP3 + 4αP4 + 3αP3. (15)

The average student block rate is the average rate of students that are
blocked, i.e. find the kitchen completely full. Since they are only blocked at
state S5 we obtain:

λblock = 3αP5. (16)

The ratio between the two average arrival rates gives the percentage of students
that are blocked, or, equivalently, the probability that an arbitrary student is
blocked (Pblocked):

Pblocked =
λ

λblock

=
3P5

8P0 + 7P1 + 6P2 + 5P3 + 4P4 + 3P3
(17)

Clearly, the effective arrival rate of the system is the total average arrival rate
minus the blocked arrival rate:

λeff = λ− λblock = 8αP0 + 7αP1 + 6αP2 + 5αP3 + 4αP4. (18)

We can find the mean waiting time of the student with the help of LITTLE’s

formula. First, we need to compute the average number of students in the
kitchen:

N =

5∑
i=0

kPk = P1 + 2P2 + 3P3 + 4P4 + 5P5. (19)

Then, using LITTLE we can find the average SYSTEM time for a student:

E[Tsystem] =
N

λeff
. (20)

Then the average waiting time will be equal to the average system time minus
the average service (cooking) time:

W = E[Tsystem]− 1

β
. (21)

There is another way to do this; that of considering the arrivals at
each state and the waiting time a student experiences given the state
of arrival. Here, we must reject the blocked arrivals cause they have
no waiting time.

The last question is a bit challenging. We are asked to consider ONLY those
students that are not rejected. So we must consider students that arrive at
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states Sk, k = 0, ...4. Generally, we use the total probability theorem, and
obtain:

Pr{W > 2h} =

4∑
k=0

Pr{W > 2h|Student sees state Sk}·Pr{Student sees state Sk}

(22)

1. If the student observes state S0 or S1 there is not waiting time. (Cooks
immediately)

2. If the student observes state S2 the student waits for an exponential
amount of time with parameter 2β.

3. If the student observes state S3 the student waits for a sum of two expo-
nential amounts of time, each with parameter 2β.

4. If the student observes state S4 the student waits for a sum of three
exponential amounts of time, each with parameter 2β.

One option is to realize that the sum of exponential variables is an Erlang-
distributed variable, and use the Erlang distribution formulas to calculate the
Pr{W > 2h|.....}.

There is however, a better option. We can realize that the times between de-
partures are exponentially distributed variables with rate 2β, considering fully
loaded kitchen counter. So, the number of departures within some time interval
will be a Poisson random variable! This is the duality between the exponential
and the Poisson distributions!

So, for example, if the student observes S4 he will want for more than T=2h, if
less than 3 departures occur during these two hours, and the number of these
departures is Poisson (2β · T ):

Pr{W > T |Student sees state S4} =
(

(2βT )0

0! + (2βT )1

1! + (2βT )2

2!

)
e−2βT

Pr{W > T |Student sees state S3} =
(

(2βT )0

0! + (2βT )1

1!

)
e−2βT

Pr{W > T |Student sees state S2} =
(

(2βT )0

0! +
)
e−2βT

(23)

The last thing to calculate the probabilities that a random student observes
a particular state. Using the same reasoning as in the calculation of the blocked
students, we get:

Pr{Student sees state S2} = 6αP2

λeff

Pr{Student sees state S2} = 5αP3

λeff

Pr{Student sees state S2} = 4αP4

λeff

(24)

Notice that we used λeff because we exclude those students that arrive at state
S5 and are blocked (because they have no waiting time).
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