BioGrace Sensitivity Analysis Ethanol from Sugarcane

Erik Hjort Amir Vadiei

BioGrace Project Heat and power Technology Energy Department Stockholm, 12th November

Methodology

- Pathway assessment
- Collect the information
- Limitation and challenges
- Chose the pathway
- sensitivity analysis!
 - Why?
 - How?

Cultivation and Processing

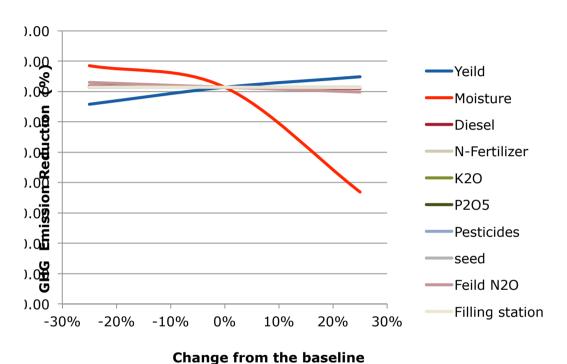
- Parameter importance
 - o Yield
 - Energy consumption
 - Agro chemicals
 - Seeding material
 - o Feild N₂O emissions
 - CH₄ from trash burning
- Target parameter
 - GHG emission reduction

Transportaion

- Parameter importance
 - Distance to processing plant
 - Distance to the port
 - Shipping distance
 - Distance to the station
- Target parameter
 - GHG emission reduction

Ethanol plant

- Yeild
- Energy Consumption
 - Electricity surplus


Neglected parameters

- Parameters with very low (or zero) impact on GHG emission
 - Manure
 - Filter mudcake
 - Transport of vinasse and mudcake
- Land use change
- Improved agricultural managment
- CO₂ capture and replacment
- CO₂ capture and geological storage

Results

3 70 **GHG Emission Reduction**50
40
30
10
0 1200 0 200 400 600 800 1000 1400 1600 km distance for dry product to ethanol plant distant from plant by Truck **3** 75 74 Reduction 73 72 **Emission** 70 69 68

6000

km

2000 4000

distance_Ship

8000 10000 12000 14000 16000

——Linear (distance_Ship)


GHG

0

Surplus Electiricity

- Considering the usual electricity producion in Brazil
 - Replace the coal source electricity with surplus electricity
 - 13 g CO2 /MJ ethanol reduction
 - 25 kWh/tone cane
 - Emission reduction increased to 89%

