EP2200 Queueing theory and teletraffic systems

Lecture 9
M/G/1 systems
Viktoria Fodor
KTH EES/LCN

The M/G/1 queue

- Arrival process memoryless (Poisson(λ))
- Service time general, identical, independent, $f(x)$
- Single server
- $M / E_{r} / 1$ and $M / H_{r} / 1$ are specific cases, results for $M / G / 1$ can be used
- Rules we can "use" from the Markovian systems
- $\rho=\lambda E[x]<1$ for stability (single server, no blocking)
- Little: $N=\lambda T$
- PASTA

The M/G/1 queue

- Recall: $\mathrm{M} / \mathrm{M} / 1$:

At the arrival of the second customer the time remaining from the service of the first customer is still $\operatorname{Exp}(\square)$

- M/G/1:
- If we consider the system when a new customer arrives, then
- the remaining (residual) service time of the customer under service depends on the past of the process (on the elapsed service time)
- Consequently: the number of customers in the system does not give a Markov chain

The M/G/1 queue

- Solution methods
- Average measures N, T, etc.
- Mean value analysis
- Distribution of the number of customers, waiting time, etc.
- Study the system at time points $t_{0}, t_{1}, t_{2}, \ldots$ when a customer departs, and extend for all points of time
- Embedded Markov chain

The M/G/1 mean value analysis Pollaczek-Khinchin mean formulas

- To calculate average measures
- We start with the average waiting time:
- the service of the waiting customers + the remaining (or residual service) of the customer in the service unit
- Average remaining service time: R_{s}
- First conditional average waiting time, then uncondition
$W_{k}=R_{s, k}+\sum_{i=1}^{k-1} X_{i}, \quad k \geq 1$
$E\left[W_{k}\right]=E\left[R_{s, k}\right]+(k-1) E[X], \quad k \geq 1 \quad$ (average waiting time for customer arriving at state k)
$W=E[W]=\sum_{k=0}^{\infty} p_{k} E\left[W_{k}\right]=p_{0} 0+\sum_{k=1}^{\infty} p_{k} E\left[R_{s, k}\right]+\sum_{k=1}^{\infty} p_{k}(k-1) E[X]$
$R_{s} \stackrel{\Delta}{=} \sum_{k=0}^{\infty} p_{k} E\left[R_{s, k}\right] \quad r_{s, 0}=0 \quad$ (average includes 0 remaining service times at state 0)
$W=R_{s}+N_{q} E[X]$
$W=R_{s}+W \lambda E[X]$
$W=\frac{R_{s}}{1-\rho}$

The M/G/1 mean value analysis Pollaczek-Khinchin mean formulas

- We have to derive the average remaining service time R_{s} :
- n : number of services in a large $T=$ number of Poisson arrivals: $n=\lambda T$ (since the system is stable)
- $\mathrm{T} \rightarrow \infty$ and $\mathrm{n} \rightarrow \infty$

The M/G/1 mean value analysis Pollaczek-Khinchin mean formulas

- From W you can derive $\mathrm{T}, \mathrm{N}, \mathrm{N}_{\mathrm{q}}$ with Little's theorem
- Comments:
- W depends on the first and the second moment of the service time only
- Mean values increase with variance (cost of randomness)
$W=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}=\frac{\lambda\left(E[X]^{2}+V[X]\right)}{2(1-\rho)}=\frac{\lambda\left(E[X]^{2}+V[X] \frac{E[X]^{2}}{E[X]^{2}}\right)}{2(1-\rho)}=\frac{\rho E[X]}{2(1-\rho)}\left(1+C_{x}^{2}\right)$
$M / M / 1: \quad C_{x}^{2}=1, \quad W=\frac{\rho E[X]}{(1-\rho)}$
$M / D / 1: \quad C_{x}^{2}=0, \quad W=\frac{\rho E[X]}{2(1-\rho)}$

M/G/1 waiting time

$$
W=\frac{\rho E[X]}{2(1-\rho)}\left(1+C_{x}^{2}\right)
$$

The M/G/1 mean value analysis Pollaczek-Khinchin mean formulas

Group work:

- Consider the following system:
- Single server, infinite buffer
- Poisson arrival process, 0.1 customer per minute
- Service process: sum of two exponential steps, with mean times 1 minute and 2 minutes.
- Calculate the mean waiting time

$$
W=\frac{\lambda E\left[x^{2}\right]}{2(1-\rho)}=\frac{\rho E[x]}{2(1-\rho)}\left(1+C_{x}^{2}\right)
$$

Distribution of number of customers in the system

*** Comment: called as queue-length in the Virtamo notes! ***

- The number of customers, N_{t} is not a Markov process
- the residual service time is not memoryless
- We can model the system at departure time and extend the results to all points of time:
- in the case of Poisson arrival the distribution of N at departure times is the same as at arbitrary points of time (PASTA)
- if we are lucky then N_{t} follows a discrete time Markov process at departure times
- since this discrete time Markov chain is rather complex, we can express the transform form (z-transform) of the distribution of the number of customers in the system.

Distribution of number of customers in the system

- In the case of Poisson arrival the distribution of N at departure times is the same as at arbitrary points of time (PASTA)
- PASTA is proved for arrival instants
- however, departure instants see the same queue length distribution

- Let us follow $N_{k}, N_{k+1}, N_{k+2} \ldots$, that is, the number of customers in the system after departures
N_{k} : number of customers after the departure of a customer k
V_{k} : number of arrivals during the service time of customer k,
$b(x)$ is the service time distribution, then:

$$
\begin{aligned}
N_{k+1}= \begin{cases}N_{k}-1+V_{k+1} & N_{k} \geq 1 \\
V_{k+1} & N_{k}=0\end{cases} & \Rightarrow \mathrm{N}_{\mathrm{k}+1} \text { depends only on } \mathrm{N}_{\mathrm{k}} \text { and } \mathrm{V}, \\
& \text { V is independent from } \mathrm{k}
\end{aligned}
$$

M/G/1 number of customers in the system

- Expressing the steady state of the Markov-chain describing N, we get the ztransform of the distribution of N
- Pollaczek-Khinchin transform form:
$Q(z)=B^{*}(\lambda-\lambda z) \frac{(1-\rho)(1-z)}{B^{*}(\lambda-\lambda z)-z}$
- where: $\rho=\lambda E[X]$ and $B^{*}(s)$ is the Laplace transform of the service time distribution. (S^{*} (s) in the Virtamo notes)
- Distribution of N with inverse transform, or moments of the distribution.
- E.g., M/M/1

M/G/1 system time distribution

- Without proof:
- Pollaczek-Khinchin transform form for the system time and waiting time:

$$
\begin{aligned}
& W^{*}(s)=\frac{s(1-\rho)}{s-\lambda+\lambda B^{*}(s)} \\
& T^{*}(s)=B^{*}(s) \frac{s(1-\rho)}{s-\lambda+\lambda B^{*}(s)}
\end{aligned}
$$

- where: $\rho=\lambda E[x]$ and $B^{*}(s)$ is the Laplace transform of the service time distribution. ($\mathrm{S}^{*}(\mathrm{~s})$ in the Virtamo notes)
- E.g., M/M/1 system time

The M/G/1 mean value analysis Pollaczek-Khinchin mean formulas

Group work again:

- Consider the system:
- Single server, infinite buffer
- Poisson arrival process, 0.1 customer per minute
- Service process: sum of two exponential steps, with mean times 1 minute and 2 minutes.
- Give the Laplace transform of the waiting time, calculate the mean waiting time

$$
W^{*}(s)=\frac{s(1-\rho)}{s-\lambda+\lambda B^{*}(s)}
$$

M/G/1

- Requirements for the exam:
- Derive and use P-K mean value formulas
- Use P-K transform forms
- typically: for given service time distribution give the transform forms, calculate moments
- Do not forget: $M / M / 1, M / D / 1, M / E_{r} / 1$ and $M / H_{r} / 1$ are specific cases of M/G/1

