
EP2200 Course Project – 2012

Project II - Simulating a Spotify Server

Ioannis Glaropoulos

November 26, 2012

1 Introduction

Considering the available information regarding the user demand and the sys-
tem capacity, we can address questions related to the performance of a queuing
system, often evaluated based on metrics such as response time, duration of
service, service denial etc. Unless, however, the models for arrival and service
processes are of particular kinds, we are not able to conduct the desired perfor-
mance evaluation based on analytic tools from Queuing Theory. In such cases
we evaluate the system performance by means of simulation.

In this project we consider the case of a Spotify back-end server, used in this
well-known on-line media-streaming service. We are given a set of models that
describe the user demand and the service capabilities of the back-end server. We
aim at measuring the system performance by simulating its behavior towards
the user input demand. We are, then, able to answer whether and under which
circumstances the system meets its service quality requirements.

2 Scenario and System Architecture

2.1 Spotify Back-end Site Description

We consider a Spotify back-end site [1] that is responsible for music delivery to
the Spotify customers. The structure of the Spotify back-end site is depicted in
Fig. 1. The site includes a set of storage servers, on which the music files (i.e.
songs) are stored. The number of available storage servers is denoted by C.

The total number of songs in the system is denoted as N . The set of songs
is denoted by N . We assume that each song, Ni, is stored in a single storage
server. Ci ∈ {1, ..., C}, i = 1, 2, ..., N denotes the allocation of song Ni, i.e. it
indicates the server on which the music file is stored. The song allocation vector,
C = {Ci}i=1,...N contains the information about how the songs are allocated on
the different storage servers.

2.2 Client Requests & Server Response

The Spotify users – belonging to a large population – generate client requests
to the back-end site, i.e. requests to download (stream) the music files. A client
request for a music file is collected by the Spotify manager, which forwards it

1



Spotify

Users

Client 

Requests

Spotify

Manager

Storage

Server

Storage

Server
Storage

Server

Storage

Server

Music

Files

Music

Files

Music

Files

Music

Files

Figure 1: Architecture of the Spotify back-end server

immediately to a storage server on which the respective music file is stored. We
model the arrival process of the client requests to the Sptify Manager with a
Poisson time-invariant process with intensity λ requests per second.

The requests are queued-up in the buffer of the storage server and are served
with first-come-first-served policy. The buffers of the storage servers can hold
at most B client requests. A server can not serve client requests in parallel. The
service of a request involves either disk or cache memory access, depending on
whether the music file is stored in the hard disk of the server, or in its cache
memory. We assume, reasonably that the service time is lower in the case a file
is stored in the cache.

A song is stored in the cache of a server with probability pC and with prob-
ability 1 − pC it is stored on the disk. If a song is stored on the cache, the
service time of a request for this song requires a fixed time of TC

S seconds, oth-
erwise, it requires an exponentially distributed amount of time with a mean of

T
H

S seconds.
We define the response time, TR, of a client request as the total time between

the arrival of a request at the Spotify back-end server and the time when this
request starts being served by the corresponding storage server.

2.3 Song Popularity

The popularity, qi, of a music file, Ni, is defined as the probability that a random
client request involves this particular music file, that is:

qi = Pr{Request is for song Ni} ∈ (0, 1), i = 1, ..., N. (1)

We assume that the popularities of the arriving client requests are i.i.d random
variables. The popularity vector, Q contains the popularities of all songs, i.e.:

Q , {q1, ...qN},

2



where it, clearly, holds:
N∑
i=1

qi = 1.

2.4 Parameter Setting

We list in Table 1 the parameter setting for the considered scenario.

Request Arrival Rate (λ) 5000 sec−1

Service Time (cache) (TC
S ) 10−4 sec

Service Time (disk) (TH
S ) ∼ exp(µ), 1/µ = T

H

C = 10−3 sec
Number of Servers (C) 5
Buffer Capacity (B) 100
Number of Songs (N) 103

Cache Availability(pC) 0.25

Table 1: List of parameters for the numerical solutions

In addition, the file file popularities.txt contains the popularity vec-
tor Q, while file song allocation.txt contains the song allocation vector
C.

3 System Simulation

You will design and implement a program that simulates the above system.
You are allowed to use any programming development environment, but you are
strongly encouraged to use MatlabTMand take advantage of its statistic toolbox
that includes libraries for probability distributions and random generators.

Before starting with the programming it is advisable to draw a pseudo-code
of the simulator, and use it to verify that your simulator actually works as it
is required. Deliver your pseudo-code along with your answers in the following
Section.

Once your implementation is finished, simulate the above system for a period
of time that is sufficiently long, in order to extract statistically significant results.
You could think of letting the simulator run for some initial warm-up period and
start collecting results only after this period. In this way you can be confident
that the system steady-state has been reached.

4 Performance Evaluation

1. Queuing System First define the queuing systems that model the Spotify
back-end and are to be simulated. Give the Kendall notations and the block di-
agrams. Define the arrival processes and the service time distributions, together
with their parameters. Motivate your decisions.

2. Response Time Simulate the queuing systems and measure the perfor-
mance of the Spotify back-end in terms of the response time. For each storage

3



server derive and plot the empirical distribution (CDF) of the response time of
the requests delegated to this particular server. Measure the average response
time for each server.

3. The Effect of Caching Simulate the system while gradually decreasing
pC until it becomes 0 (no cashing) and compare the resulting average response
time per server with the ones of the original system. Explain the result.

Consider pC = 0. Consider, also, the approximation of having infinite buffer
capacity at the storage servers. Based on these give the approximate CDF of
the system response time, using known analytic results. Compare with what
you get by simulating the system. Are the results similar?

4. Service Denial For the original system measure the performance of the
Spotify back-end in terms of service denial, i.e. the percentage of client requests
that are dropped by the storage servers, because their buffer is full. Give the
probability of service denial for each storage server and evaluate the result.

5. Load Balancing Calculate the sample variance (σ̂2) of the average re-
sponse times at each storage server:

σ̂2 =
1

C

C∑
j=1

(
T j
C − µ̂TC

)2
, (2)

where T j
C is the measured average response time for server j and µ̂TC

is the
sample mean of the average response times considering all storage servers:

µ̂TC
=

1

C

C∑
k=1

T k
C . (3)

What is the reason for having different average response times at the servers?
Suggest a different song allocation at the storage servers, Ć, that – in your
opinion – reduces the variations between the response times. Motivate your
answer!

Consider your proposed song allocation vector, Ć, simulate the system with
the same client request demand (λ) and song popularity vector, Q, and measure
the new average response times for the storage servers. Compare with the ones
measured for the original system and evaluate whether your proposal was good
or not.

5 Submission instructions and grading

• Submission deadline: Monday, January 4, 2013. Electronic submission
to ioannisg at kth.se, or printed copy to STEX. Do not forget to add
your name.

• You are allowed to solve the problem in groups, however, you have to
prepare a project report on your own. Reports including the same text
will be disqualified.

4



• You need to submit a report of a maximum of 4 printed pages. The report
needs to contain a description of the solution of the problems, including
the motivation of the models used, and the pseudo-code on which the
simulator is built. Discuss your results. Are they reasonable?

• You need to use software tools to get the results, we propose Matlab, but
we accept all solutions, e.g., you can even program everything in C. You
should not include your codes in the report.

• Check the grammar of the report. There are good tools available to do
that. Make sure that performance graphs are possible to interpret. Give
the dimensions and units of the axes.

Grading: pass or fail. To pass the moment, you need to show that you made
a serious attempt to solve the problems. The best 20% of the submissions receive
5 extra points on the exam in December. Extra points will not be considered at
the make-up exam or at later exams. These best 20% reports will be published
on the course web.

Would you have any questions, contact John at ioannisg at kth.se.

References

[1] R. Yanggratoke, G. Kreitz, M. Goldmann, and R. Stadler, “Predicting re-
sponse times for the spotify backend,” in International Conference on Net-
work and Service Management (CNSM), October 2012.

5


