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Open and closed queuing networks 
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• Queuing network: network of queuing systems 
– E.g., data packets traversing the network from router to router 

• Open and closed networks 
– Open queuing network: customers arrive and leave the network 

(typical application: data communication) 
– Closed queueing networks: in and out flows are missing – 

constant number of customers circulate in the network 
(application: computer systems) 
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Open queuing networks- A tandem 
system 

• The most simple open queuing network  
• Assume  a Poisson arrival process and independent, exponentially distributed 

service times  
• What is the departure process from queue 1? 

– Interdeparture time: 
• Customer leaves queue behind: time of service of next customer 
• Customer leaves empty system behind: time to next arrival + time of service 

 
 
 

 
 

– Departure process: Poisson (λ)! 
• Same for M/M/m, but not for systems with losses and not for M/G/m systems 
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A tandem system 

• Tandem system 
– Queue 1 is an M/M/1 queue 
– Departure process from Queue 1 is Poisson 
– Thus Queue 2 is also an M/M/1 queue 

• State of the tandem queue: N=(n1,n2), p(n)=p(n1,n2) 
• Jackson theorem: the network behaves as if  set of independent 

queues, that is: 
– 𝑝(𝑛1,𝑛2) = 𝑝(𝑛1)𝑝(𝑛2) 
– Proof: see Virtamo notes 
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• For two transmission links in series, queue 2 is not a M/M/1-queue   

– Correlation between service times of a customer in the two queues – determined 
by the packet length and the link transmission rate 

– Correlation between arrival and service times 
• For two consecutive packets, the interarrival time at the second queue can not be smaller 

than the service (that is, transmission) time of the first packet at the first queue 
• E.g., there will not be any queuing in queue 2 if the transmission rate at queue 2 is larger 

– Product form solution does not apply 
 

• Kleinrock’s assumption on independence 
– Traffic to a queue comes from several upstream queues 

• Superposition of Poisson processes give a Poisson process 
– Traffic from a queue is spread randomly to several downstream queues 

• Partial processes are Poisson with intensity pi λ  (Σ pi=1) 
– It is assumed to create independence  
– Product form solution applies 
– E.g., network of large routers 

 

Modeling communication networks 
- note on the indepdence assumption 
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Open Jackson’s queuing networks 
• Open queuing network 

– arrivals to the network 
– from all arrival point a departure point is reachable 

• M queues with infinite storage and m exponential servers 
– Even finite storage if “last queue” in the networks 

• Customers from outside of the network arrive to node i as a Poisson process with 
intensity γi≥0 

• The service times are independent of the arrival process (and service times in other 
queues) 

• A customer comes from node i to node  j after service with the probability pij or leaves 
the network with the probability pi0=1-∑pij.  

• Note, it allows feedback (e.g, p11). The arrival process in not Poisson anymore, but the 
queue behaves as if the arrival would be Poissonian. 
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• Flow conservation: arrival intensity to node j is 
 
 

• Jacksons theorem: The distribution of number of customers in the 
network has product form – queues behave as independent M/M/m 
queues! (we do not prove – same as for tandem queues) 
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• Flow conservation: arrival intensity to node j: 
 
 

• Example 1: single feedback queue 
 
 
 
 
 
– Performance measures as if it would be M/M/1 
– Though the arrival process is not  Poisson 
– Stability:  
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• Arrival intensity and state probability 
 
 

 
 

• For the M/M/1 case: 
 
 

 
• Example 2 

– calculate arrival intensities 
– calculate the probability that the network is empty 
– calculate the probability that there is one customer in the network 
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• Little’s theorem applies to the entire network! 
• The mean number of customers in the network and the average time 

spent in the network are (e.g., M/M/1 case) 
 

 
 
 
 

• The mean number of nodes a customer visits before leaving: 
– {Sum arrival intensity to the queues} / {arrival intensity to the network} 
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Closed Jackson’s queuing networks 

• Not exam material this year 
• Closed queuing network 
• M queues with infinite storage and m exponential servers 
• K customers circulating in the network, no arrivals and departures 
• The service times are independent of the arrival process (and service 

times in other queues) 
• A customer comes from node i to node  j after service with the 

probability pij  
• Queues can not be independent, since there is a fixed number of 

customers 
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• Flow conservation: arrival intensity to node j: 
 
 

• Limited set of states, since the sum of the customers is constant K: 
 

 
• MC based solution: state: vector of number of customers per queue - complex 
• Algorithmic solution – e.g., M/M/1  

– (*) gives a set of dependent equations, with solution of e.g.: 
 
 
– we have to select the one that gives sum of network state probabilities equal to one 
– Gordon-Newell: state probabilities, without calculating arrival intensities (without proof) 
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• Queuing networks:  
– set of queuing systems 
– customers move from queue to queue 

• Applied to networking problems: independence of queues have to 
be ensured 

• Open queuing networks 
– Burke: Output process of an M/M/m queue is Poissonian 
– Jackson theorem: network state probability has product form if 

M/M/m queues 
• Closed queuing networks – not exam material 

– Number of customers constant 
– State of queues is dependent – Gordon-Newell normalization 

Summary 
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