SG2218 – 2012 Turbulence models for CFD

Stefan Wallin Linné FLOW Centre Dept of Mechanics, KTH

Dept. of Aeronautics and Systems Integration, FOI

There are no "simple" turbulent flows

Turbulent boundary layer:

Instantaneous velocity field (snapshot) $u_i(x,t)$

Ref: Prof. M. Gad-el-Hak, University of Notre Dame

Prediction of turbulent flows

Standard RANS models

Advanced RANS models

Direct Numerical Simulation – DNS

Large Eddy Simulation – LES

Hybrid RANS – LES methods

Prediction of turbulent flows

DNS – RANS

DNS – RANS

• Huge Reynolds number dependency (al least Re³)

Expensive!

DNS – RANS

RANS:

- **Reduction of dimensions -> cheap**
 - Here: 2D and steady
- Only statistical information of turbulence scales:
 - Time and length scales
 - rms values
 - Smooth fields = easy to resolve -> cheap

low velocity regions

Time averaged

Length of the recirculation region is of engineering interest

How expensive is DNS?

• DNS of flat plate turbulent boundary layer

- Schlatter, et al., KTH, Dept. of Mechanics
- APS meeting 2010: http://arxiv.org/abs/1010.4000
- http://www.youtube.com/watch?v=4KeaAhVoPIw
- http://www.youtube.com/watch?v=zm9-hSP4s3w
- $-Re_{\theta} = 4300, Re_{\tau} = 1400$
- 8192×513×768 = 3.2×10⁹ spectral modes (7.5×10⁹ nodes)
- $\Delta x^+ = 9, \Delta z^+ = 4 \longrightarrow \text{box: } L^+ = 70\ 000, \ H^+ = W^+ = 3\ 000$
- BL relations: $Re_x = 1.4 \times 10^6$
- CPU time: 3 months @ 4000 CPU cores = 1 unit
- DNS of Airplane, same Reynolds number (*Re_x* = 1.4×10⁶; *c*=0.5m, *U*=40m/s)
 - Only a narrow stripe wing requires about 1 000 stripes
 - $N_{nodes} = 10^{13}$
 - CPU = 10³ units

Empirical turbulent BL relations

• Skin friction coefficient:
$$\frac{C_f}{2} = \frac{\tau_w}{\rho U_\infty^2} = \left(\frac{Re_\tau}{Re_\delta}\right)^2 \approx 0.0296 Re_x^{-1/5}$$

- Boundary layer thickness: $\frac{\delta}{x} = \frac{Re_{\delta}}{Re_{x}} \approx 0.37 Re_{x}^{-1/5}$
- Boundary layer momentum thickness: $Re_{ au} \approx 1.13 Re_{ heta}^{0.843}$
- Reynolds numbers:

$$Re_{\tau} \equiv \frac{\delta u_{\tau}}{\nu} \qquad Re_{\theta} \equiv \frac{\theta U_{\infty}}{\nu} \qquad Re_{\delta} \equiv \frac{\delta U_{\infty}}{\nu} \qquad Re_{x} \equiv \frac{xU_{\infty}}{\nu}$$

Empirical relations plotted

DNS – full scale airplane

Re scaling – wall bounded flow

- Nodes:
$$N_{nodes} \sim \frac{L \times B \times H}{\Delta x \Delta z \Delta y} \sim L^{+2} H^+ \sim R e_x^{5/2}$$

- Time steps: $N_{\Delta T} \sim \frac{T}{\Delta T} \sim T^+ \sim R e_x^{4/5}$

– CPU time:
$$N_{CPU} \sim N_{nodes} \times N_{\Delta T} \sim R e_x^{33/10}$$

- DNS of Airplane ($Re_x = 70 \times 10^6$) (factor of 50)
 - $N_{nodes} = 10^{17}$
 - CPU = 10⁹ units

Supercomputer development

Computational effort – different approaches

Name	Aim	Unsteady	Re-dependence	3/2D	Empiricism	Grid	Steps	Ready
2DURANS	Numerical	Yes	Weak	No	Strong	10^{5}	10 ^{3.5}	1980
3DRANS	Numerical	No	Weak	No	Strong	107	10^{3}	1990
3DURANS	Numerical	Yes	Weak	No	Strong	10^{7}	10 ^{3.5}	1995
DES	Hybrid	Yes	Weak	Yes	Strong	10^{8}	10^{4}	2000
LES	Hybrid	Yes	Weak	Yes	Weak	$10^{11.5}$	$10^{6.7}$	2045
QDNS	Physical	Yes	Strong	Yes	Weak	10^{15}	10 ^{7.3}	2070
DNS	Numerical	Yes	Strong	Yes	None	10^{16}	$10^{7.7}$	2080

From Spalart, Int. J. Heat and Fluid Flow, 2000

- RANS: Reynolds Averaged Navier-Stokes
- URANS: Unsteady RANS slowly in time
- DES: Detached Eddy Simulation
- LES: Large eddy simulation
- QDNS: Quasi DNS, or wall resolved LES
- DNS: Direct Numerical Simulation (of the Navier-Stokes eq's)
- "Ready": When first results can be expected

RANS

- Reynolds stresses $\overline{u'_i u'_k}$
 - Appears because of the non-linear term $u_k \frac{\partial u_i}{\partial x_k}$
 - Not "small"
 - Significant effects on the flow
- RANS modelling
 - Model Reynolds stresses in terms of "known" quantities
 - Reduces the problem to steady (or slowly varying)
 - 2D assumptions possible
- Closure problem
 - Equation for $\overline{u'_i u'_k}$ can be derived from the N-S equation
 - Contains higher order correlations, e.g. $\overline{u'_i u'_j u'_k}$
 - All equations of the statistical properties contain additional correlations.

Reynolds stress anisotropy map

anisotropy map in channel flow

