SG2218 - 2012

Turbulence models for CFD

Stefan Wallin Linné FLOW Centre Dept of Mechanics, KTH

Dept. of Aeronautics and Systems Integration, FOI

Last time

Boussinesq hypothesis (eddy-viscosity assumption)

$$\overline{u'v'} = -\nu_T \frac{dU}{dy} \qquad \qquad a_{ij} = -2\frac{\nu_T}{K}S_{ij}$$

- Problems: history effects, alignment, rotation
- Eddy-viscosity models
 - Algebraic (zero-equation models)
 - One-equation models (Spalart-Allmaras)
 - Two-equation models (std k- ε , Wilcox k- ω , Menter SST k- ω)

$$\begin{split} \frac{DK}{Dt} &= \mathcal{P} - \varepsilon + \frac{\partial}{\partial x_k} \left[\left(v + \frac{v_T}{\sigma_K} \right) \frac{\partial K}{\partial x_k} \right] \\ \frac{D\varepsilon}{Dt} &= (C_{\varepsilon 1} \mathcal{P} - C_{\varepsilon 2} \varepsilon) \frac{\varepsilon}{K} + \frac{\partial}{\partial x_k} \left[\left(v + \frac{v_T}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_k} \right] \\ \mathcal{P} &= 2v_T S_{ij} S_{ji} \qquad v_T = C_\mu \frac{K^2}{\varepsilon} \end{split}$$

Model coefficients (standard values):

$$C_{\mu}$$
 = 0.09 , $C_{\varepsilon 1}$ = 1.44 , $C_{\varepsilon 2}$ = 1.92 , σ_{K} = 1.0 , σ_{ε} = 1.3

Kolmogorov (1942), Wilcox (80:s and 90:s)

 ω is intepreted as the inverse time scale of the large eddies, and the $K-\omega$ model reads

$$\begin{split} \frac{DK}{Dt} &= 2v_T S_{ij} S_{ji} - C_{\mu} K \omega + \frac{\partial}{\partial x_k} \left[\left(v + \frac{v_T}{\sigma_K} \right) \frac{\partial K}{\partial x_k} \right] \\ \frac{D\omega}{Dt} &= 2\alpha S_{ij} S_{ji} - \beta \omega^2 + \frac{\partial}{\partial x_k} \left[\left(v + \frac{v_T}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_k} \right] \\ v_T &= \frac{K}{\omega} \end{split}$$

The model coefficients proposed by Wilcox (1988) are

$$C_{\mu} = 0.09, \, \alpha = 5/9 \approx 0.56, \, \beta = 0.075, \, \sigma_{K} = 2.0, \, \sigma_{\omega} = 2.0$$

The $K - \omega$ model – problems

Unphysical influence of free stream conditions

- Calibration of the Schmidt numbers
- Introducing a "cross diffusion term"
- Such modifications have been proposed by
 - Menter SST (1993)
 - Kok (1999)

Boundary conditions

The $K - \varepsilon$ model is singular at the wall

- Log-law boundary conditions
 - Not strictly valid in separated flows
- Near-wall (low-Reynolds number) corrections
 - Wall damping functions based on

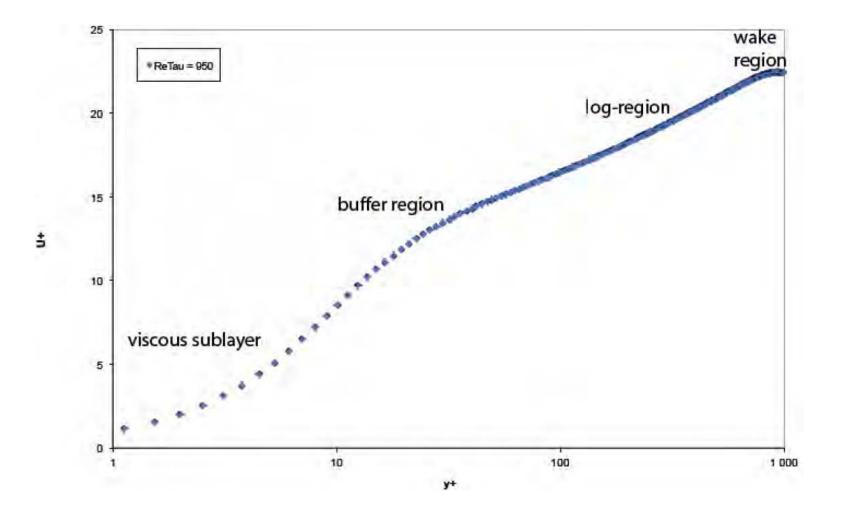
$$y^+ \equiv y u_\tau / v$$
, $y^* \equiv y \sqrt{K} / v$ or $Re_T \equiv K^2 / v \varepsilon$

- Active up to $y^+ \sim 50$
- Near-wall grid size $\Delta y^+ \approx 1$

The $K - \omega$ model

- No such problems can be integrated to the wall
- Near-wall grid size $\Delta y^+ \approx 1$

Turbulent boundary layer



Modelling of production

Exact: $\mathcal{P} = -\overline{u_i u_k} \frac{\partial U_i}{\partial r_k}$ Model: $\mathcal{P} = -2\nu_T S_{ij} S_{ij}$

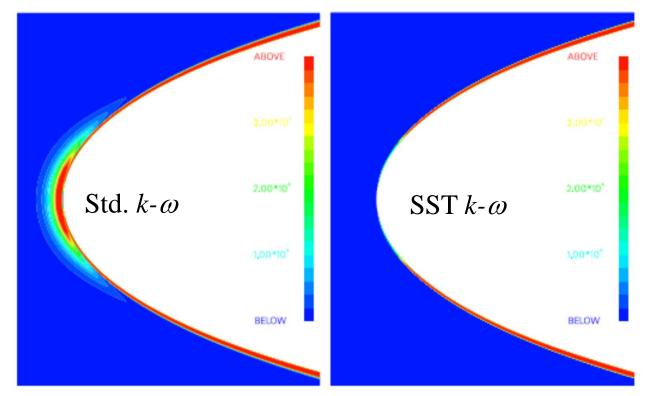
- Strain rate dependency

 - $\begin{array}{ll} \mbox{ Exact linear dependency:} & \mathcal{P}\sim S & S\sim \partial U/\partial y \\ \mbox{ Model quadratic dependency:} & \mathcal{P}\sim S^2 & \end{array}$
- What is the consequence
 - No problem in equilibrium flows
 - Stagnation flows: turbulence overpredicted -> e.g. heat transfer in stagnation regions
 - Separated flows: turbulence overpredicted -> separation size typically underpredicted
- How to improve: Menter SST - Limit turbulence viscosity $\nu_T = \frac{a_1 K}{\max(a_1 \omega, S)}$

Example – stagnation flow

Flow around a wing profile – leading edge

- Turbulence kinetic energy shown
- Std. Eddy-viscosity models excessive production of *K*
- Cured by "SST"



Rotation and flow curvature

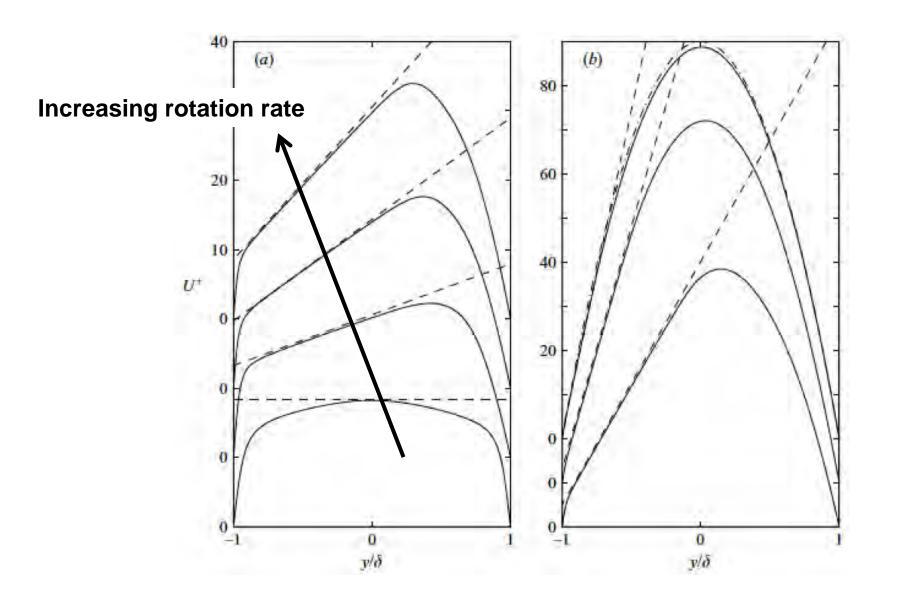
- Eddy-viscosity model e.g. std K-eps model
- Dependent on S_{ii}
 - Symmetric part of velocity gradient
 - Invariant of rotation
- No dependence on Ω_{ii}

$$\begin{split} \frac{DU_i}{Dt} &= -\frac{\partial}{\partial x_i} \left(\frac{P}{\rho} + \frac{2}{3} K \right) + \frac{\partial}{\partial x_k} [2(v + v_T) S_{ij}] \\ \frac{DK}{Dt} &= \mathcal{P} - \varepsilon + \frac{\partial}{\partial x_k} \left[\left(v + \frac{v_T}{\sigma_K} \right) \frac{\partial K}{\partial x_k} \right] \\ \frac{D\varepsilon}{Dt} &= (C_{\varepsilon 1} \mathcal{P} - C_{\varepsilon 2} \varepsilon) \frac{\varepsilon}{K} + \frac{\partial}{\partial x_k} \left[\left(v + \frac{v_T}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_k} \right] \\ \mathcal{P} &= 2v_T S_{ij} S_{ji} \qquad v_T = C_{\mu} \frac{K^2}{\varepsilon} \end{split}$$

Thus:

- No model influence on rotation, swirl, or flow curvature
 - But turbulence is very dependent
- Empirical "fixes": Different rotation corrections

Rotating turbulent channel



Milestone – Eddy-viscosity models (EVM)

- 0- and 1-eq models incomplete (additional information needed)
- 2-eq models (K-ε)
 - •Based on N-S equations
 - •Model coefficients by calibration/analysis of generic flows
- Popular eddy-viscosity models (EVM):
 - Spalart-Allmaras 1-eq model
 - Menter SST *K*-*ω* model
- Good for:
 - Attached thin boundary layers
 - Mainly 2D flows
- EVMs in general not good for:
 - Non-equilibrium flow
 - Swirl, rotation and flow curvature
 - Boundary layer separation
- There are fixes ...
- A better way is to get rid of the eddy-viscosity assumption

-> Reynolds stress models

Reynolds stress models (RST or DRSM)

Reynolds stress equation

$$\frac{\mathrm{D}\,\overline{u_i'u_j'}}{\mathrm{D}t} = \mathcal{P}_{ij} + \Pi_{ij} - \varepsilon_{ij} - \frac{\partial T_{ijk}}{\partial x_k}$$

Advection by the mean flow (exact) = Transported by the mean flow

$$D/Dt \equiv \partial/\partial t + U_k \partial/\partial x_k$$

• Production (exact) = of energy, taken from mean flow $\mathcal{P}_{ij} \equiv -\overline{u'_j u'_k} \frac{\partial U_i}{\partial x_k} - \overline{u'_i u'_k} \frac{\partial U_j}{\partial x_k}$

or

$$\mathcal{P}_{ij} = -K\left(\frac{4}{3}S_{ij} + (a_{ik}S_{kj} + S_{ik}a_{kj}) - (a_{ik}\Omega_{kj} - \Omega_{ik}a_{kj})\right)$$

Reynolds stress models ...

Pressure-strain rate (model) = Redistribution among components

$$\frac{\Pi_{ij}}{\varepsilon} = -\left(C_1^0 + C_1^1 \frac{\mathcal{P}}{\varepsilon}\right) a_{ij} + C_2 S_{ij}^* + C_3 \left(a_{ik} S_{kj}^* + S_{ik}^* a_{kj} - \frac{2}{3} a_{kl} S_{lk}^* \delta_{ij}\right) - C_4 \left(a_{ik} \Omega_{kj}^* - \Omega_{ik}^* a_{kj}\right)$$

- LRR: Launder, Reece & Rodi (1975)
- SSG: Speziale, Sarkar & Gatski (1991)
- Dissipation rate (isotropic) = Viscous dissipation into heat

$$\varepsilon_{ij} = \frac{2}{3}\varepsilon\delta_{ij}$$

- Plus equation for ε
- Turbulent flux = Redistribution in space
 - Gradient diffusion

Dution in space

$$T_{ijk} = -\left(\nu + \frac{\nu_T}{\sigma_K}\right) \frac{\partial \overline{u'_i u'_j}}{\partial x_k}$$

- Daly & Harlow (GGD)
$$T_{ijk} = -\left(\nu\delta_{kl} + c_s \frac{K}{\varepsilon} \overline{u'_k u'_l}\right) \frac{\partial u'_i u'_j}{\partial x_l}$$