

SG2218 Large Eddy Simulation

2012

Basic equations

• Navier-Stokes equations (*u*, *p* denote instantaneous values)

$$\frac{\partial u_i}{\partial t} + u_k \frac{\partial u_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_k} \left(v \frac{\partial u_i}{\partial x_k} \right)$$
(1)

• RANS - ensemble or time averaging: $u_i(x, t) = U_i(x) + u'_i(x, t)$

$$U_i(\mathbf{x}) = \frac{1}{T} \int_0^T u_i(\mathbf{x}, t') dt'$$
(2)

• LES - spatial filtering: $u_i(x, t) = \bar{u}_i(x, t) + u'_i(x, t)$ (in the following, overbar denotes a filtered quantity)

$$\overline{u}_{i}(\mathbf{x},t) = \int_{V} u_{i}(\mathbf{x}',t) G(\mathbf{x},\mathbf{x}') d\mathbf{x}'$$
(3)

Basic equations ...

Filtered Navier-Stokes equations

$$\frac{\partial \bar{u}_i}{\partial t} + \bar{u}_j \frac{\partial \bar{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} - \frac{\partial \tau_{ij}^{SGS}}{\partial x_j} + \frac{\partial}{\partial x_j} \left(v \frac{\partial \bar{u}_i}{\partial x_j} \right)$$
(4)

• Subgrid-scale (SGS) stress tensor $\tau_{ij}^{SGS} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j = L_{ij} + C_{ij} + R_{ij}$ (5)

where the decomposition according to Leonard (1974) is

- $L_{ij} = \overline{u}_i \overline{u}_j \overline{u}_i \overline{u}_j$ Leonard stresses (interaction between resolved scales)
- $C_{ij} = \overline{\overline{u}_i u'_j} + \overline{u'_i \overline{u}_j}$ cross terms (interaction between resolved and unresolved scales)
- R_{ij} = u'_iu'_j SGS Reynolds stress (interaction between unresolved small scales)

LES v.s. RANS equations

Filtered N-S (LES)	RANS
Most of the turbulent energy resolved by $\bar{\boldsymbol{u}}_i$	no turbulence resolved in U_i
<i>u</i> ' _{<i>i</i>} represents only the smallest SGS scales	u'_i represents all turbulent fluctua-tio
Solution of \bar{u}_i always 3D and time dependent	solution of U_i steady (or slowly varying) and may be homogeneous (or slowly varyin) in space

Modelling of SGS turbulence

- SGS represents only small part of turbulence energy
 - Modelling not that critical
 - "resolving at least 80% of turbulence kinetic energy"
 - Small scale turbulence more isotropic and in equilibrium
 - Modelling more simple
- Eddy viscosity models are OK
- Filter usually related to grid
 - This means that models are grid dependent by nature (!)
 - Inhomogeneous grid size -> inhomogeneous filter
 - Commutation errors (?)

Smagorinsky (1963)

- Eddy viscosity model
- SGS eddy viscosity and lenght scale relations
- Assumption: SGS production = dissipation

• Subgrid viscosity:
$$v_T^{SGS} = (C_s \Delta)^2 S$$

- One model constant Smagorinsky constant
 - Standard value 0.18
 - Not very universal

Other models

- One or two-equation models Solve for SGS turbulence energy
- KTH VETENSKAP OCH KONST
- Dynamic models Evaluate Cs from coarser filtering – no model constant Germano (1991)
- Implicit LES

۲

 $v_{SGS} \sim \Delta^2$ – as in a 2'nd order numerical scheme Let the numerical scheme dissipate the SGS energy MILES – Boris (1992)

Applications for LES and RANS

		LES	RANS
ૻૡ૱ૢૡઌઙ૾ૺૺૼૼ	Suitable cases:	free shear flows, blunt bod- ies, geometry induced sep- aration, low Re number	thin shear layers, weak geometry induced separa- tion, high Re number
	Problem cases	thin shear layers (expen- sive)	massive separation

 But, how to compute a case with both thin boundary layers and massive separation, e.g. a not-so-streamlined car?

Hybrid LES – RANS models

LES and RANS in different regions:

 RANS where LES is to expensive Boundary layers

Thin shear layers

- LES where RANS fails Massive separation
- Very active research field
- Many names:

DES, PANS, VLES, DDES, IDDES, URANS, XLES, T-RANS, ...

Spalart DES

Spalart et al. 1997 "Detached Eddy Simulation"

- Using the fact that the filtered N-S equation and the RANS equation can be written in the same form only the modelling of $\overline{u'_i u'_i}$ differs.
- Use a RANS model for $\overline{u'_i u'_i}$ in thin shear layers.
- Use a LES SGS model for $\overline{u'_i u'_i}$ away from walls.

Spalart DES ...

 Starting point is the Sparart-Allmaras 1-eq. model (see notes from RANS modelling).

$$\frac{\partial v_T}{Dt} = c_{b1} S v_T - c_{w1} f_w \left(\frac{v_T}{d}\right)^2 + \mathcal{D}_{v_T}$$

d is the distance from the wall. If *d* is replaced with ∆, the filter width, and the balance between production and dissipation is fulfilled (equilibrium hypothesis)

$$c_{b1}Sv_T \approx c_{w1}f_w \left(\frac{v_T}{\Delta}\right)^2$$

or rewritten

$$v_T \approx \frac{c_{b1}}{c_{w1} f_w} \Delta^2 S$$

which is similar to the Smagorinsky SGS model

Spalart DES ...

- With $d = \Delta$ the Sparart-Allmaras will work as a SGS model
- KTH VETENSKAP OCH KONST
- Spalart DES

$$d = \min(d, C_{\text{DES}}\Delta)$$

where Δ is the local grid size.

- RANS close to the wall where grid size (in any direction) > wall distance
- LES far from the walls where the grid size < wall distance
- Interface between RANS and LES dependent on the grid
- DES works well in cases with both regions with thin BLs (high Re) and massive separation

Rudimentary landing gear

- Resolved surface pressure (top) and
- Resolved turbulent structures (bottom)
- Hybrid RANS LES model
 - RANS: here a simple mixing length model

Cp 1.00 0.89 0.79 0.68 0.47 0.37 0.26 0.16 0.05 -0.05 -0.16 -0.26 -0.37 -0.47 -0.47 -0.58 -0.68 -0.79 -0.89 -1.00 V

By Shia-Hui Peng, FOI

More examples Hybrid RANS-LES