
1

JavaServer Faces, JSF

javax.faces

JSF Home page:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

JSF tag library documentation: 
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/



2

JSF, Content

• JSF Introduction
• JSF tags
• Managed Beans
• Expression language
• JSP Standard Tag Library (JSTL)



3

A Simple Example
 The example has two views.



4

A Simple Example, Cont'd
 The first JSF page, index.xhtml.



5

A Simple Example, Cont'd
 The second JSF page, welcome.xhtml.



6

A Simple Example, Cont'd
 The managed bean, User.java.



7

Overview of JSF Architecture

• JSF has a component based architecture

– Treats view parts as UI components, not as HTML 

elements.

– Maintains an internal component tree.

– Think of it as a Swing or AWT UI.

– index.xhtml in the initial example has three 

components. The first, a form, is the ancestor of the 

other two, a button and a text field.



8

Overview of JSF Architecture, 
Cont'd

• Each tag in a page has an internal associated tag 

handler class inside JSF.

– The tag handler classes are organized according to the 

component tree.

• The internal JSF classes handles translation of JSF 

tags to HTML tags, interpretation of Http requests, 

calls to managed beans etc.



9

The Phases of a JSF Request



10

The Phases of a JSF Request

• Restore View Phase

– Retrieves the component tree (i.e. tree of internal tag 

handler classes) for the page if it was displayed 

previously. It the page is displayed the first time the 

component tree is instead created.

– If there are no Http parameters in the request JSF skips 

directly to the Render Response phase.



11

The Phases of a JSF Request, Cont'd

• Apply Request Values Phase

– The Http request parameters are placed in a hash table 

that is passed to all objects in the component tree.

– Each object identifies the parameters belonging to the 

component it represents and stores those parameter 

values.

– Values stored in objects in the component tree are 

called local values.



12

The Phases of a JSF Request, Cont'd

• Process Validations Phase

– It is possible to attach validators to user editable components (typically text 

fields) in a JSF page, using JSF tags.

– Example of validators are that a field is not empty, that a parameter is an 

integer, that it is a string of a certain length etc.

– In this phase, the validators are executed to check that the local values are 

correct.

– If some validation fails JSF skips to the Render Response phase and 

redisplays the current page with error messages about the failed validations.



13

The Phases of a JSF Request, Cont'd

• Update Model Values Phase

– The local values are used to update managed beans by 

invoking setter methods.

– Managed beans and their properties are identified by 

their names, in the index.html page in the initial 

example the user enters their name in a text field that 

has the value user.name. This means the name is 

sent to the method setName in the managed bean that 

is named user.



14

The Phases of a JSF Request, Cont'd

• Invoke Application Phase

– Here the method specified by the action attribute of 

the component that caused the Http request is called.



15

The Phases of a JSF Request, Cont'd

• Render Response Phase

– Here the next view is created.

– Everything in the XHTML page except JSF tags is unchanged.

– JSF tags are transformed to XHTML tags by the objects in the 

component tree.

– Getter methods in managed beans are called in order to retrieve 

values. In the welcome.xhtml page in the initial example the 

value user.name is retrieved by a call to the method getName in 

the managed bean that is named user.



16

Tag Libraries in JSF

• HTML

– Used to create HTML elements. 

– The recommended prefix is h:

– Some important tags are covered below.

• Core

– Used to add objects , such as validators, listeners and 

AJAX support, to HTML elements.

– The recommended prefix is f:

– Example in the slides explaining validation.



17

Tag Libraries in JSF, Cont'd

• Facelets

– Used to create composite views, e.g. views that have 

common components like header, footer and menu, 

without using duplicated code.

– The recommended prefix is ui:



18

Tag Libraries in JSF, Cont'd

• Composite Components

– Used to create custom components.

– The recommended prefix is composite:



19

Tag Libraries in JSF, Cont'd

 JSTL (JSP Standard Tag Library) Core

– Utility tags managing for example flow control.

– The recommended prefix is c:

– Some important tags are covered below.

• JSTL (JSP Standard Tag Library) Functions

– Utility functions mainly for handling strings.

– The recommended prefix is fn:

–  Some example tags are covered below.



20

Tag Library Declaration

 Tag libraries must be declared in the XHTML 

page where they are used.

 This is done in the <HTML> tag.

 The index.xhtml in the initial example uses 

the HTML tag library. It is declared as follows.
  <html xmlns="http://www.w3.org/1999/xhtml"

      xmlns:h="http://java.sun.com/jsf/html">



21

Some Tags in the HTML Tag 
Library

• head, renders the head of the page.

• body, renders the body of the page.

• form, renders an HTML form.

• inputText, renders an HTML text field.

• inputSecret, renders an HTML password field.

• outputLabel, renders a plain text label for another 

component.

• outputText, renders plain text.

• commandButton, renders a submit button.



22

Attributes for The HTML Tags

• All tags mentioned on the preceding page, except head and body, 

have the following attributes.

– id, gives a unique name to the component. All components have a unique 

name. It is assigned by JSF if not stated explicitly with the id tag. 

– value, specifies the component's currently displayed value. This can be an 

expression that refers to a property in a managed bean. If so, the value will 

be read from the bean when the component is displayed and stored to the 

bean when the component is submitted.

– rendered, a boolean expression that tells whether the component is 

displayed or not.



23

Attributes for The HTML Tags, 
Cont'd

 The outputLabel tag also has the for attribute.

 Specifies for which other component this component is 

a label. The label is normally displayed immediately to 

the left of that other component.



24

Attributes for The HTML Tags, 
Cont'd

 The commandButton tag also has the action 
attribute. 

 Tells what to do when the user clicks the button.

 Can be the name of a XHTML page, without the 

.xhtml extension. In this case the specified page is 

displayed.

 Can also be the name of a method in a managed bean, 

in this case that method is invoked.



25

JSTL (JSP Standard Tag Library) 

Core Tags
• choose, an if statement.

    <c:choose>
      <c:when test="#{condition}">
        The condition was true.
      </c:when>
      <c:otherwise>
        The condition was false.
      </c:otherwise>
    </c:choose>

• If the boolean condition specified in the test 
attribute is true, the when block is executed, if not 
the otherwise block is executed.



26

JSTL (JSP Standard Tag Library) 

Core Tags, Cont'd
• forEach, a loop statement.

    <c:forEach var="element" items="#{myList}"

              varStatus="loopCount" >

      Element number #{loopCount.count} is #{element}

   </c:forEach>

• The var attribute specifies the name of the variable holding the current 

element's value. This variable is used when the value shall be displayed.

• The items attribute refers to the collection that shall be iterated over.

• The varStatus attribute defines a variable that holds information like the 

current element's index in the collection.



27

Functions In the JSTL (JSP Standard 

Tag Library) Functions Library
• Note that these are functions, not tags.

• contains(str, substr), returns true if 

str contains substr.

• startsWith(str, substr), returns true 

if str starts with substr.

• length(str), returns the length of str. 

• And many more.



28

JSTL (JSP Standard Tag Library) 

Functions Functions, Cont'd
• Example:



29

Managed Beans

• Managed beans are plain Java classes.

– Must have a public no-arg constructor.

– Annotated @Named(“myName”), where myName becomes the 

name of the bean.

• The beans are managed by the CDI (Context and 

Dependency Injection) container.

– Part of Java EE

– Creates and connects objects according to specifications in 

annotations.



30

Managed Beans, Cont'd

• All managed beans have a scope which defines their life time. Some scope 

annotations are:

– ApplicationScoped, the object will exist for the entire application life time.

– SessionScoped, the object will be discarded when the current Http session 

ends.

– ConversationScoped, a conversation can be started and stopped manually in 

the code. If it is not, it has the life time of a Http request. Unlike sessions, 

conversations are unique for each browser tab and therefore thread safe.

– RequestScoped, the object will be discarded when the current Http request 

ends.



31

Managed Beans, Example



32

Expression Language

• The expression language is used in dynamic 
expressions in JSF (and JSP) pages.
– Stateless, variables can not be declared.

– Statements are written between #{ and }
– The result of an EL statement is a string.



33

Expression Language, Cont'd

• The syntax is 
#{something.somethingElse}, where 
something is for example one of the following:
– The name of a managed bean.

– param, which is a java.util.Map containing all 
HTTP request parameters. If there are more parameters 
with the same name the first is returned.

– paramValues, which is a java.util.Map 
containing all HTTP request parameters. No matter how 
many parameters there are with the specified name a 
java.util.List with all of them is returned.



34

Expression Language, Cont'd

– header, which is a java.util.Map containing all 
HTTP headers. If there are more headers with the same 
name the first is returned.

– headerValues, which is a java.util.Map 
containing all HTTP headers. No matter how many 
headers there are with the specified name a 
java.util.List with all of them is returned.

– cookie, which is a java.util.Map containing all 
HTTP cookies.



35

EL, The Operators . and []

• If the operator . is used 
(#{something.somethingElse}) the 
following must be true.
– something is a java.util.Map or a managed 

bean.

– somethingElse is a key in a java.util.Map or 
a property in a managed bean or a method in a managed 
bean.



36

EL, The Operators . and [], Cont'd

• If the operator [] is used 
(#{something[“somethingElse”]}) the 
following must be true.
– something is a java.util.Map, a managed bean, an 

array or a java.util.List.

– If somethingElse is a string (surrounded by double 
quotes, “”) it must be a key in a java.util.Map, a 
property in a managed bean, an index to an array or an 
index to a java.util.List.

– If somethingElse is not surrounded by double quotes it 
must be a valid EL statement.



37

EL Examples
• If these are managed beans:

@Named(“person”)
public class PersonBean {
    @Inject private DogBean dog;

    public DogBean getDog() {
        return dog;
    }
}

@Named(“dog”)
public class DogBean {
    private String name;

    public String getName() {
        return name;
    }
}

• Then it is allowed to write #{person.dog.name} or 
#{person[dog["name"]]}.



38

EL Examples, Cont'd

• Input from an HTML form:
<form>
  Address: <input type="text" name="address">
  Phone1: <input type="text" name="phone">
  Phone2: <input type="text" name="phone">
</form>

• Can be read like this:
The address is #{param.address}
Phone1 is #{param.phone}
Phone1 is #{paramValues.phone[0]}
Phone2 is #{paramValues.phone[1]}

• However, there is seldom any need for this since request 
parameters are normally handled by managed beans. 



39

The EL Operators

• Remember that JSF/JSP pages are views and thus not the place for a lot 
of calculations.

• Arithmetic

–  addition: +

– subtraction: -

– multiplication: *

– division: / or div

– remainder: % or mod

• Logical

– and: && or and

– or: || or or

– not: ! or not



40

The EL Operators, Cont'd

• Relational
– equals: == or eq

– not equals: != or ne

– less than: < or lt

– greater than: > or gt

– less than or equal to: <= or le

– greater than or equal to: >= or ge



41

EL, Null Values

• Since EL is used for user interfaces it produces the 
most user friendly output.

• This means that (like HTML) it tries to silently ignore 
errors. 

• Null values does not generate any output at all, no 
error messages are produced.



42

Java Contexts and Dependency 
Injection for the Java EE platform, 

CDI

javax.annotation, javax.decorator, javax.inject, 
javax.enterprise.inject, 

javax.enterprise.context, javax.inteceptor

Specification:
http://www.jcp.org/en/jsr/summary?id=299

Documentation:

http://docs.jboss.org/weld/reference/1.0.0/en-US/html/



43

CDI, Contents

● Introduction

● Beans Characteristics

● Injecting Beans

● Interceptors

● Life Cycle Callbacks

● More Features (not covered here)



44

Introduction

• The CDI container manages the life cycle of Java 

objects and their relations and interactions.

– This relieves the application from the burden of 

creating and discarding objects at the right time, 

which might be problematic in web applications.

• Since the CDI container manages all relations it 

can intercept calls between objects and do 

additional handling, for example add interceptors.



45

Introduction, Cont'd

• More or less all problems regarding object 

management can be solved by CDI.

• Do not reinvent the wheel, do not forget CDI. 

Whenever you write code managing object life 

cycles, check if it can be done easier with CDI.



46

Bean Characteristics

• Practically all Java objects that have a no-arg constructor or 

a constructor annotated @Inject are beans, i.e. can be 

managed by the CDI container.

• A bean has one or more types.

– The types are the names of all classes and interfaces in the 

bean's class declaration. If the declaration is 

public class MyBean extends SuperClass 

implements MyInterface the bean's types are 

java.lang.Object, MyBean, SuperClass and 

MyInterface.



47

Bean Characteristics, Type

• Practically all Java objects that have a no-arg constructor or 

a constructor annotated @Inject are beans, i.e. can be 

managed by the CDI container.

• A bean has one or more types.

– The types are the names of all classes and interfaces in the 

bean's class declaration. If the declaration is 

public class MyBean extends SuperClass 

implements MyInterface the bean's types are 

java.lang.Object, MyBean, SuperClass and 

MyInterface.



48

Bean Characteristics, Scope

• A bean has a scope.

– The scope determines when the bean is instantiated and 

discarded.

– An object is always created when it is first accessed, 

independent of its scope.

– @ApplicationScoped, the object remains for the 

application's entire life time.

– @SessionScoped, the object will be discarded when 

the current Http session ends.



49

Bean Characteristics, Scope, Cont'd
– @ConversationScoped, a conversation can 

be started and stopped manually in the code, 

using a 

javax.enterprise.context.Conversa

tion object. If it is not, it has the life time of a 

Http request. Note that a conversation scoped 

object is always discarded when the Http session 

ends. Unlike sessions, conversations are unique 

for each browser tab and therefore thread safe.



50

Bean Characteristics, Scope, Cont'd

– @RequestScoped, the object will be discarded 

when the current Http request is handled.

– @Dependent, the bean has the same scope as 

the bean into which it is injected. If it is 

referenced in an EL expression it lives only 

during that expression. A @Dependent bean is 

never shared between other beans.



51

Bean Characteristics, Qualifier

• A bean has one more more qualifiers.

• A bean type alone might not provide enough information 

for the container to know which bean to inject. For instance, 

suppose we have two implementations of for example a 

Payment interface: CreditCardPayment and 

CashPayment. Injecting a field of type Payment 

(@Inject private Payment payment) does not 

tell CDI which implementation to inject. In these cases, we 

must specify which of them to inject. This is done using a 

qualifier



52

Bean Characteristics, Qualifier, 
Cont'd

• A qualifier is a user-defined annotation that is itself annotated @Qualifer:

– The qualifier declaration:

@Qualifier

@Target({TYPE, METHOD, PARAMETER, FIELD})

@Retention(RUNTIME)

public @interface CreditCard {}

– The declaration of a class using the qualifier.

@CreditCard

public class CraditCardPayment implements Payment {

    //Payment methods.

}

– In some bean where the qualified class is injected:

@Inject @CreditCard private Payment payment 



53

Bean Characteristics, EL Name

• If the bean shall be accessed from a JSF page it 

must have a Expression Language (EL) name.

– The EL name can be left out if the bean is not 

accessed from a JSF page.

• The EL name is specified with the @Named 

annotation, i.e. 

@Named(“ELBean”)

public class MyBean {



54

Injection Points

• The @Inject annotation can be placed at a field, 

a constructor or a set method (called initializer 

method).

• The CDI container guarantees that if a matching 

bean exists it will be passed to the injection point.



55

Which bean instance can be 
injected?

• A bean instance that is to be passed to another 

bean's injection point must:

– Be of the type specified at the injection point.

– Match all qualifiers at the injection point (if there are 

any).

• There will be an error at deploy time (not execution 

time) if there is no bean matching an @Inject 

annotation.



56

The Injected Bean's Scope

• The scope of an injected bean depends on the scope 

of the injected bean, not the scope of the bean into 

which it is injected.

• To make sure that the injected instance is not shared 

with other beans and that it has the same scope as the 

bean into which it is injected, add @New to the 

injection point:

@Inject @New private MyBean myBean;



57

Interceptors

• An interceptor is a method that is called before and/or 

after another method. The call of the interceptor is not 

performed in the application code, but by the 

container.

• In CDI, an interceptor definition is an annotation:
@InterceptorBinding

@Target({METHOD, TYPE})

@Retention(RUNTIME)public @interface Logging {}



58

Interceptors, Cont'd

• The interceptor implementation is an ordinary class, annotated 

@Interceptor and with the interceptor definition:
@Logging

@Interceptor

public class Logger implements Serializable {

    @AroundInvoke

    public Object logInvocation(InvocationContext ctx) 

                                      throws Exception {

        //Print a log message.

    }

}

• The @AroundInvoke annotation means that the method is 

called before and after any method annotated with the interceptor 

annotation (i.e. @Logging).



59

Interceptors, Cont'd

• Annotating a method with the interceptor annotation causes a call 

to the interceptor before and after calls to the annotated method.

• Annotating a class with the interceptor annotation causes a call to 

the interceptor before and after calls to any method in that class:

@Logging

public class User implements Serializable {

    …

}



60

Interceptors, Cont'd

• Interceptors must be enabled in the beans.xml 

configuration file:

    <interceptors>

        <class>util.Logger</class>

    </interceptors>



61

Life Cycle Callbacks

• A method annotated @PostConstruct is executed after 

dependency injection is done but before the class is put 

into service.

– There can only be one such method per class. The method must 

be void and take no arguments and may not throw a checked 

exception. All accessibilities are possible.

• The @PreDestroy annotation is used on methods as a 

callback notification to signal that the instance is in the 

process of being removed by the container.

– The same rules apply as for post construct methods. 



62

More CDI Features
• CDI has many more features besides those covered here. Some examples 

follows.

• Alternatives, a possibility to chose bean implementation at deployment time. 

Useful for example for testing.

• Events, resembles the Observer design pattern but provides additional 

functionality.

• Stereotypes, a way to avoid duplicated code by placing properties shared by bean 

classes in one common location.

• Specialization, allows one bean type to replace another bean type.

• Decorators, objects that intercepts method calls to beans and extend their 

functionality. This is the same design pattern as is used by the streams in the 

java.io package.



63

Bean Validation

javax.validation.*

Specification:
http://www.jcp.org/en/jsr/summary?id=303

Documentation Summary:

http://www.oracle.com/technetwork/articles/javaee/javaee6overview-141808.html#beanval



64

Bean Validation, Contents

● Introduction

● Built-In Constraints

● Custom Constraints



65

Introduction, the Problem

• Validating data is a common task that occurs throughout an 

application, for example, in the presentation layer using JSF 

tags.

• The same validations as in the presentation are probably 

required in methods in the model and integration layers, 

since those layers can not rely on validations done in other 

layers.

• This introduces the risk of coding the same validation logic 

in multiple layers, which means duplicated code.



66

Introduction, the Solution

• Bean Validation removes this code duplication by 

offering a standard framework for validation. 

• The same set of validators can be shared by all the 

layers of an application.

• The validations are specified as annotations or in 

XML configuration files.



67

Built-In Constraints

• The built-in constraints are found in the package 

javax.validation.constraints. Below 

is an example that specifies that the length of the 

string must be at least 1 character. It also shows 

one possible way to specify an error message.
  @Size(min=1, message="Please enter a value")

 private String street;

– Note that a string in an Html field is never null so the 

@NotNull constraint can not be used here.



68

Built-In Constraints, Cont'd

• We can not validate JSF pages using JSF validation 

tags if exactly the same validation shall be used in 

all layers.

– Instead, bean validations must be placed in the 

managed beans, as on the previous slide.



69

Custom Constraints

• A custom constraint is an annotation with the 

@Constraint annotation:

@Constraint(validatedBy = ZipCodeValidator.class)

@Documented

@Target({ANNOTATION_TYPE, METHOD, FIELD})

@Retention(RUNTIME)

public @interface ZipCode {

    String message() default "Not a valid zip code";

    java.lang.Class<?>[] groups() default {};

    java.lang.Class<? extends Payload>[] payload() default {};

}



70

Custom Constraints, Cont'd
• The validation of the custom constraint is performed by the class specified in the 

@Context annotation (see previous slide):

public class ZipCodeValidator implements 

ConstraintValidator<ZipCode, String> {

    @Override

    public void initialize(ZipCode constraintAnnotation) {}

    @Override

    public boolean isValid(String value, 

                           ConstraintValidatorContext context) {

        try {

            Integer.parseInt(value);

        } catch(NumberFormatException nfe) {

            return false;

        }

        return value.length() == 5;

    }

}



71

Custom Constraints, Cont'd

• The custom constraint is used just like built-in 

constraints:

    @ZipCode

    private String zipCode;


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

