

Electricity Pricing

ROYAL INSTITUTE OF TECHNOLOGY Lectures 3-4 in EG2050 System Planning Lars Abrahamsson

Course objectives

To pass the course, the students should show that they are able to

• perform rough estimations of electricity prices.

To receive a higher grade (A, B, C, D) the students should also show that they are able to

 identify factors that have a large importance for the electricity pricing, and to indicate how these factors affect for example producers and consumers.

Ideal Pricing

What price would we have in an ideal market?

- Assume a set, G, of producers, where each producer, g, has to decide its production, G_g .
- Assume a set, C, of consumers, where each consumer, c, has to decide its consumption, D_c .
- Ignore transaction costs.

<u>Definition</u>: A price-taking producer has such a small market share that the market price, λ , is not affected by the choice of production level, G_g .

The profit is equal to

$$PS_g = \lambda G_g - C_{G_g}(G_g),$$

where

 PS_g represents the surplus of producer g $C_{G_g}(G_g)$ represents the cost to produce G_g

ROYAL INSTITUTI OF TECHNOLOGY

Price-taking producer (2/2)

Which production level maximizes profits?

Study the marginal cost curve, i.e., the variable costs $MC_{G_g}(G_g) = \frac{dC_{G_g}(G_g)}{dG_g}$ $MC_{G_g}(G_g)$ => choose G_g such that $MC_{G_g}(G_g) = \lambda$.

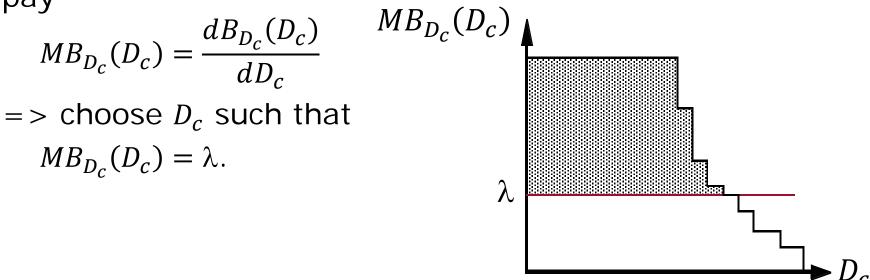
<u>Definition</u>: A price-taking consumer has such a small market share that the market price, λ , is not affected by the choice of consumption level, D_c .

The profit is equal to

$$CS_c = B_{D_c}(D_c) - \lambda D_c,$$

where

 CS_c represents the surplus of customer c, $B_{D_c}(D_c)$ represents the benefit of consuming D_c .



ROYAL INSTITUTI OF TECHNOLOGY

Price-taking Consumer (2/2)

Which consumption level maximizes profits?

Study the marginal benefit curve, i.e., the willingness to pay

Benefit to the society

- Producers will increase their production until the marginal production cost is equal to the market price.
- Consumers will increase their consumption until the marginal benefit is equal to the market price.

Is this behavior beneficial to the society?

=> Study the total surplus.

Total surplus (1/2)

<u>Definition</u>: The total surplus, *TS* is given by

$$TS = \sum_{c} CS_{c} + \sum_{g} PS_{g} = \dots = \sum_{c} B_{D_{c}}(D_{c}) + \sum_{g} C_{G_{g}}(G_{g})$$

Note! The total surplus is not a perfect measure of the benefit to the society.

It presumes that all benefits and costs can be assigned monetary values (externalities)

Total surplus (2/2)

- Combine all consumers marginal benefit functions into a demand curve, *MB*.
- Combine all producers marginal cost functions into a supply curve, *MC*.

The total surplus is maximized if

 $MB = MC = \lambda$.

- *MB* denotes Marginal Benefit, whereas
- MC denotes Marginal Cost.

Market price

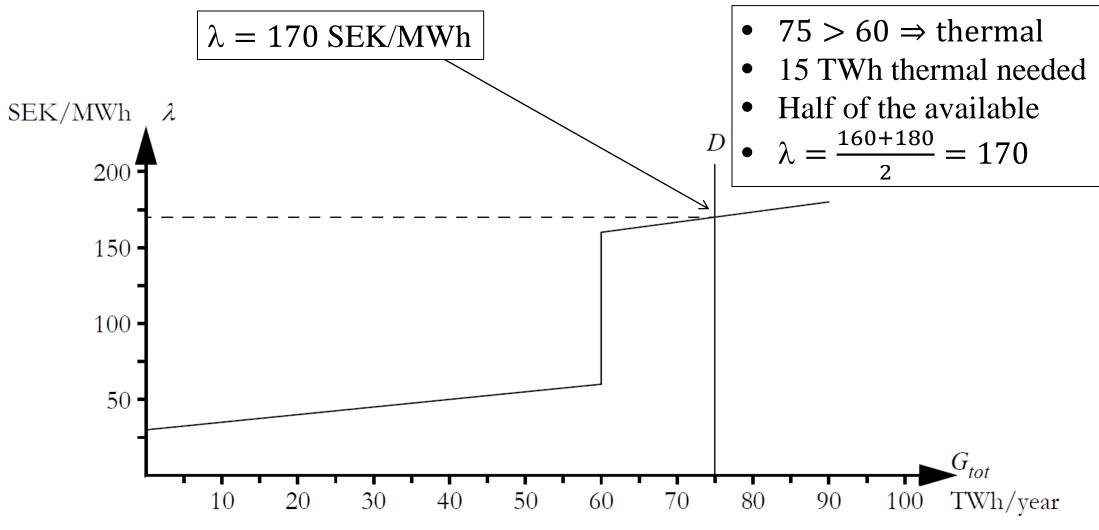
- In an ideal market (perfect competition, perfect information, etc.) there will be a market price which maximizes both the total surplus and each individual surplus of all the producers and consumers.
- The market price is set by the intersection of the supply curve and the demand curve, i.e., marginal production costs and willingness to pay.

Simple Price Model

Assume:

- Perfect competition
- Perfect information
- No capacity limitations
- No transmission limitations
- No reservoir limitations
- Price insensitive load

=> Mean electricity price can be estimated by studying the supply curve on an annual basis.


ROYAL INSTITUT

Example 3.1 – Problem

- Load 75 TWh/year
- Hydro power
 - 60 TWh/year
 - 30-60 SEK/MWh
- Coal condensing
 - 30 TWh/year
 - 160-180 SEK/MWh
- What will the electricity price be?
- Calculate the difference between variable operation cost and total income of the power producers! (total producers' surplus)

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTI OF TECHNOLOGY

Example 3.1 – Solution (2/2)

Total variable operation cost
PC = 60 ³⁰⁺⁶⁰/₂ + 15 ¹⁶⁰⁺¹⁷⁰/₂ = 5175 MSEK
whereas the income
PV = 75 · 170 = 12750 MSEK
and, thus the total producers' surplus is

Exercise 3.6 (p 32) – Problem (1/5)

- Table 3.2 shows
 - the available generation resources,
 - marginal generation costs,
 - and annual consumption in the Nordic countries during year 2000.
- The operation costs are assumed to be linear within the stated intervals.
- Assume
 - Perfect competition
 - Perfect information
 - Continues ...

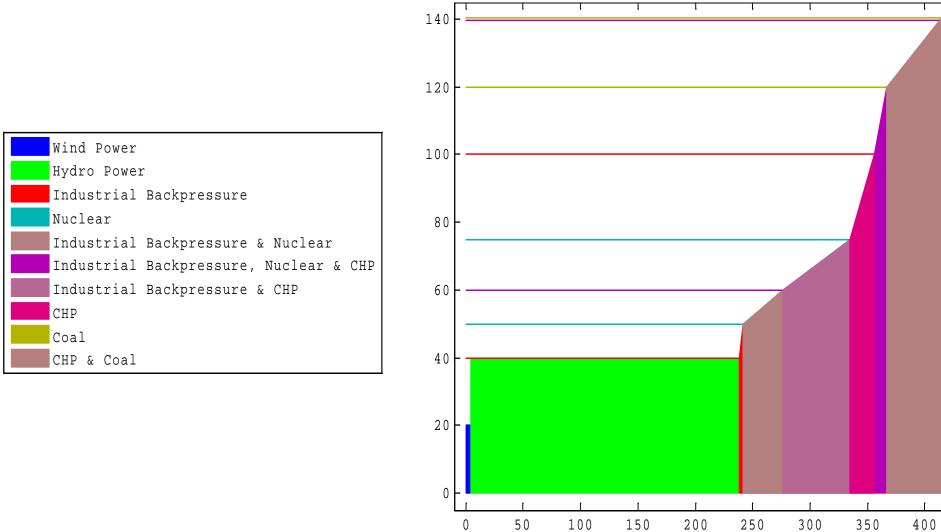
ROYAL INSTITUTI

Exercise 3.6 (p 32) – Problem (2/5)

- Assume
 - Continued ...
 - That there a neither any
 - Capacity
 - Transmission, nor
 - Reservoir limitations
- Trade
 - Finland imports 4 TWh from Russia
 - Denmark exports 5 TWh to Germany
 - Sweden exports
 - 0.5 TWh to Germany and
 - 0.5 TWh to Poland

ROYAL INSTITUTE OF TECHNOLOGY

Exercise 3.6 (p 32) – Problem (3/5)


Table 3.2 Available generation resources and annual consumption.

Power source	Production capability [TWh/year]				Cost
	Sweden	Norway	Finland	Denmark	[SEK/MWh]
Hydro power	78	142	14	-	40
Wind power	0.5	0	0	4	20
Nuclear power	55	-	21.5	-	50-75
Industrial backpressure	5	-	13	2	40–100
Comb. heat and power	5	-	13	24	60–140
Coal condensing	-	-	13	24	120–140
Consumption	146	124	79	35	

Exercise 3.6 (p 32) – Problem (4/5)

ROYAL INSTITUTE OF TECHNOLOGY

Exercise 3.6 (p 32) – Problem (5/5)

- Estimate the electricity price
- Estimate the trading between the Nordic countries
- How would the electricity price be affected if the reservoir sizes are reduced such that they are filled on July 31?
 - Everything else is kept constant in the problem
 - Describe the trend orally, no numerical values or computations needed

Exercise 3.6 (p 32) – Solution (1/3)

- Net export: 1 4 + 5 = 2
- Total consumption in the Nordic countries: 146 + 124 + 79 + 35 + 2 (net export) = 386.
- Assume that all hydro, wind, nuclear, and industrial back-pressure is utilized =>
- Total production: 78 + 142 + 14 + 0.5 + 4 + 55 + 21.5 + 5 + 13 + 2 = 335, which is not enough,
- 51 TWh more needed.
- Assume a price between 100 and 120 SEK/MWh:
 - Combined heat and power (CHP), capacity 5+13+24=42<51
 - Coal condensing needed!

Exercise 3.6 (p 32) – Solution (2/3)

• Assume a price between 100 and 140 SEK/MWh:

•
$$\frac{\lambda - 60}{140 - 60} \cdot 42 + \frac{\lambda - 120}{140 - 120} \cdot 37 = 51 \Rightarrow \lambda = \frac{2436}{19} \approx 128.21 \text{ SEK/MWh}$$

- Error-check: Is the price within the assumed range?
- Answer: 128.21 SEK/MWh
- Shares of total possible production:

- CHP:
$$\frac{\lambda - 60}{140 - 60} = \frac{51}{79} \approx 0.853$$

- Coal: $\frac{\lambda - 120}{140 - 120} = \frac{39}{95} \approx 0.411$

• Swedish net production: $78 + 0.5 + 55 + 5 + 5 \cdot 0.853 - 146 - 1 \approx -4.2 =>$ Imports 4.2 TWh

Exercise 3.6 (p 32) – Solution (3/3)

- Norwegian net production: 142 124 = 18 => Exports 18 TWh
- Finnish net production: $14 + 21.5 + 13 + 13 \cdot 0.853 + 13 \cdot 0.411 79 + 4 \approx -10.1 = >$ Imports 10.1 TWh
- Danish net production: $4 + 2 + 24 \cdot 0.853 + 24 \cdot 0.411 35 5 \approx -3.7 = >$ Imports 3.7 TWh
- Check: Sums to zero!, CHP preferred!
- Reservoir sizes such that they are filled on July 31
 - It is better to use the water rather than to spill it
 - This reduces the prices before July 31
 - And increases the prices after July 31, since there will be a shortage of water then

ROYAL INSTITUTI OF TECHNOLOGY

Example 3.3 – Problem (1/2)

• Load:

- 1 January 30 June: 35 TWh
- 1 July 31 December: 40 TWh
- Coal condensing 30 TWh/year.
 - evenly distributed over the year
 - 160-180 SEK/MWh
- Hydro power
 - Similar to Example 3.1
 - 30-60 SEK/MWh
 - Continues ...

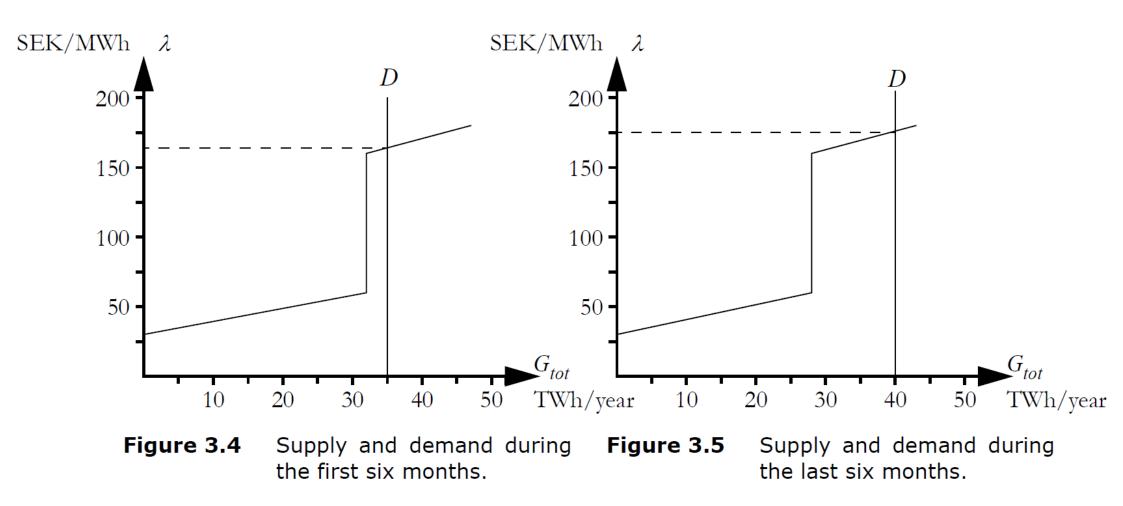
ROYAL INSTITUTI OF TECHNOLOGY

Example 3.3 – Problem (2/2)

Hydro power

- Continued ...
- Reservoir capacity: 18 TWh
- Reservoir contents:
 - 1 January, 00:00: 0 TWh
 1 July, 00:00: 18 TWh
 - 31 December, 23:59: 0 TWh
- Inflow:
 - 1 January 30 June: 50 TWh
 - 1 July 31 December: 10 TWh
- Determine the electricity price during the year

Example 3.3 – Solution #1 (1/3)


• First six months:

- Hydro potential: 50 18 = 32 TWh.
- Load: 35 TWh => Fully utilized => λ > 60 SEK/MWh.
- Coal condensing potential: 15 TWh.
- 3 TWh coal energy needed => 20% utilized => $\lambda = 0.8 \cdot 160 + 0.2 \cdot 180 = 164$ SEK/MWh.
- Last six months:
 - Hydro potential: 10 + 18 = 28 TWh.
 - Load: 40 TWh => Fully utilized => λ > 60 SEK/MWh.
 - Coal condensing potential: 15 TWh.
 - 12 TWh coal energy needed => 80% utilized =>
 - $\lambda = 0.2 \cdot 160 + 0.8 \cdot 180 = 176 \text{ SEK/MWh}.$

Example 3.3 – Solution #2 (2/3)

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTE OF TECHNOLOGY

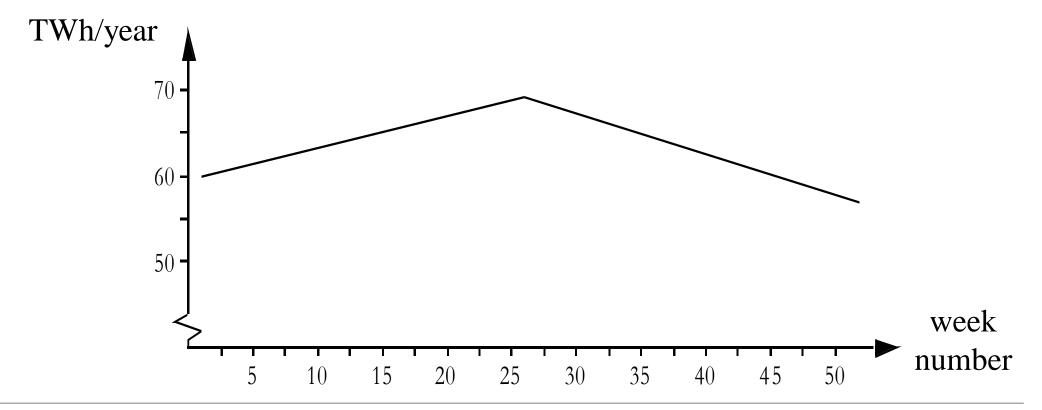
Example 3.3 – Solution #2 (3/3)

• First six months: - $32 + 15\left(\frac{\lambda - 160}{180 - 160}\right) = 35$ - $\lambda = 164$

• Last six months:

-
$$28 + 15\left(\frac{\lambda - 160}{180 - 160}\right) = 40$$

- $\lambda = 176$



ROYAL INSTITUTE OF TECHNOLOGY

Example 3.4 - Problem

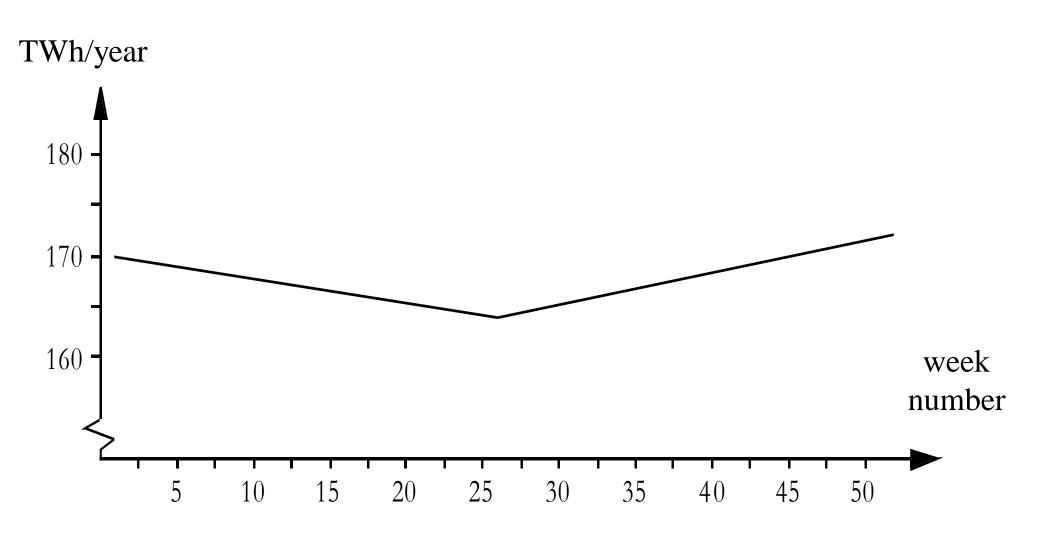
How will the price develop during the studied year?

The same system as in Example 3.1, but the inflow forecast for the next 12 months varies as follows:

Example 3.4 – Solution #1 (1/4)

- Strategy:
 - Find the brake point of the piecewise linear function
 - Draw the lines between these points
- Week 1: Same as in Example 3.1
 - $\lambda = 170 \text{ SEK/MWh}$
- Week 26:
 - Hydro potential: 69 TWh.
 - Load is till 75 TWh
 - Fully utilized => λ > 60 SEK/MWh.
 - Coal condensing potential: 30 TWh.
 - 6 TWh coal energy needed
 - 20% utilized $\lambda = 0.8 \cdot 160 + 0.2 \cdot 180 = 164$ SEK/MWh.

OYAL INSTITUTI


Example 3.4 – Solution #1 (2/4)

- Week 52:
 - Hydro potential: 57 TWh.
 - Load is till 75 TWh
 - Fully utilized => λ > 60 SEK/MWh.
 - Coal condensing potential: 30 TWh.
 - 18 TWh coal energy needed
 - 60% utilized => λ = 0.4 · 160 + 0.6 · 180 = 172 SEK/MWh.

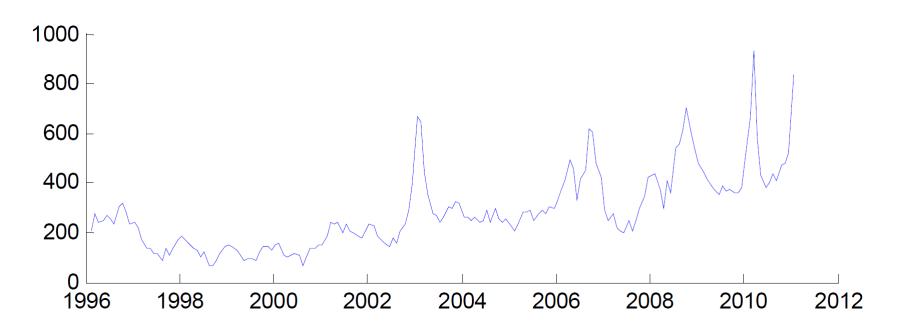
Example 3.4 -Solution #1 (3/4)

ROYAL INSTITUTE OF TECHNOLOGY

Example 3.4 – Solution #2 (4/4)

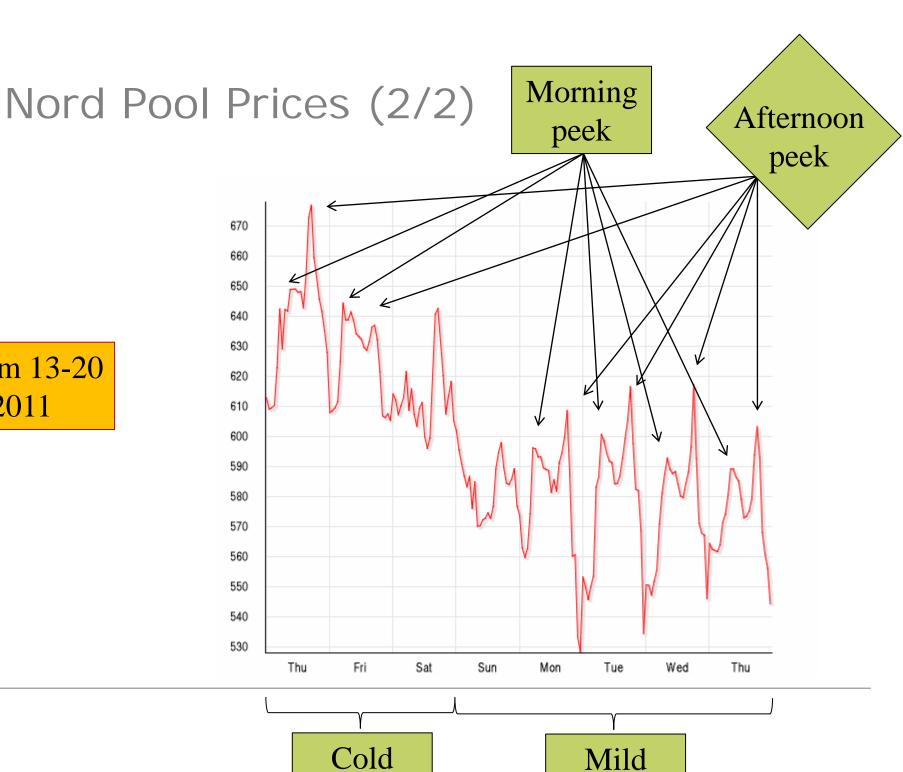
- Strategy:
 - Demand of 75 TWh
 - Hydro power will never suffice by its own
 - Coal needed, the amount needed is a linear function of forecasted hydro potential
 - Price varies linearly with marginal coal price

•
$$\lambda = 160 + \left(\frac{180 - 160}{30}\right)(75 - V)$$


- Where, (75 V) represents the remaining demand on coal
- $75 V \le 30 \Rightarrow V \ge 45$, where 30 denotes the coal capacity
- $75 V \ge 0 \Rightarrow V \le 75$, which ensures that the needed coal energy is nonnegative
- <u>Thus</u>: holds as long $45 \le V \le 75$

ROYAL INSTITUTE OF TECHNOLOGY

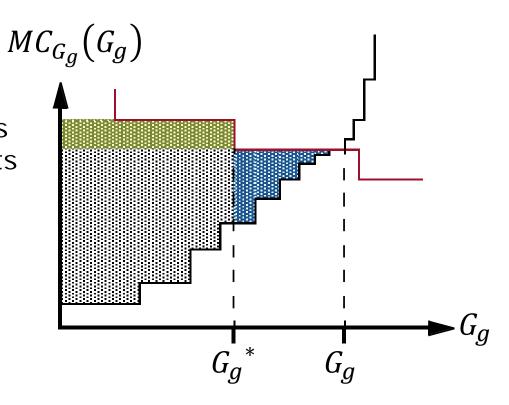
Nord Pool Prices (1/2)


Average electricity price [SEK/MWh] per month in Nord Pool price area Stockholm

ROYAL INSTITUTE OF TECHNOLOGY

> Stockholm 13-20 January 2011

Market Power


- Market power arises
 - when a player has such a large market share
 - that the actions of that individual player
 - will affect the market price,
 - i.e. the player is a price setter.
- A price setter can increase its own profits
 - compared to the ideal market ...
 - ... this will decrease the total surplus.
- It is illegal to exercise market power
 - (but it is hard to prove that a player actually is using market power).

OYAL INSTITUTI

Price-setting producer

- In the ideal market,
 - the producer would choose the production level G_g ,
 - where the marginal costs of the company intersects the demand curve.
- However, reducing the production to $G_g^* < G_g$ is profitable if
 - the lost earnings (blue area) is smaller than the increased earnings (green area).

Example 3.5 – Problem (1/3)

- Large producer, AB Kraftjätten
 - 60 TWh/year, 40 SEK/MWh
- Remaining producers
 - small capacity compared to market turnover
 - Marginal costs vary linearly between 40 SEK/MWh and 200 SEK/MWh
- Demand, 80 TWh, not price sensitive
- Assume
 - Perfect information
 - continues ...

ROYAL INSTITUT

Example 3.5 – Problem (2/3)

- Assume
 - continued ...
 - That there are neither any
 - Capacity
 - Transmission, nor
 - Reservoir limitations
- What would the price be
 - If we had perfect competition?
 - If AB Kraftjätten maximizes its profits by utilizing its power as a price setter?

Example 3.5 – Problem (3/3)

ROYAL INSTITUTE OF TECHNOLOGY

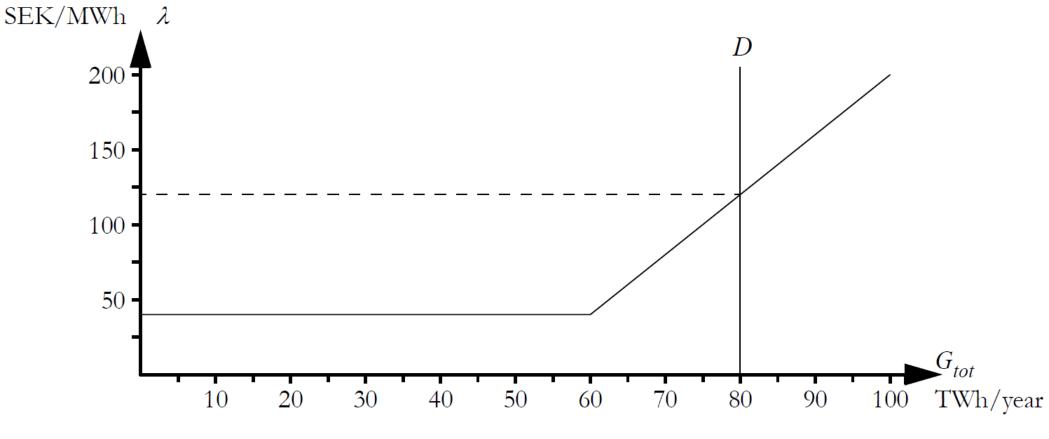


Figure 3.10 Supply and demand of the electricity market in example 3.5.

Example 3.5 – Solution (1/5)

Perfect competition

$$-60 + \left(\frac{\lambda - 40}{200 - 40}\right) \cdot 40 = 80 \Rightarrow \lambda = 120$$

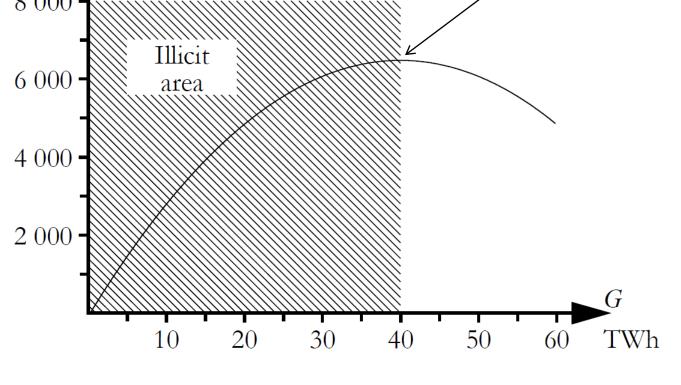
- AB Kraftjätten maximizes profit
 - Let G denote the annual generation of the company

-
$$\lambda(G) = 120 - 4(G - 60) = 360 - 4 \cdot G$$
, where

- The slope, 4, comes from $\frac{200-40}{40} = \frac{160}{40} = 4$, and where
- $G \leq 60$, related to the company's capacity, and where
- $G + 40 \ge 80 \Rightarrow 40 \le G,$
- where 40 represents the competitors' total capacity,
- and where 80 represents the total demand
- continues ...

OYAL INSTITUTI

Example 3.5 – Solution (2/5)


• AB Kraftjätten maximizes

- continued ...
- Surplus of company: $PS(G) = G \cdot \lambda(G) 40 \cdot G = 360 \cdot G 4G^2 40 \cdot G = 320 \cdot G 4G^2$
- Maximum is either at
 - Endpoint(s), or
 - Stationary point(s)
- However, we solve it graphically today!

ROYAL INSTITUTE OF TECHNOLOGY

Example 3.5 – Solution (3/5) MSEK PS $8\ 000$ $G\ 000$ Illicitarea

Figure 3.11 The surplus of AB Kraftjätten as a function of chosen annual generation.

ROYAL INSTITUTI OF TECHNOLOGY

Example 3.5 – Solution (4/5)

• AB Kraftjätten maximizes

- continued ...
- Surplus of company: $PS(G) = G \cdot \lambda(G) 40 \cdot G = 360 \cdot G 4G^2 40 \cdot G = 320 \cdot G 4G^2$
- Maximum is either at
 - Endpoint(s), or
 - Stationary point(s)
- λ (40) = 120 4(40 60) = 120 + 80 = 200

Example 3.5 – Problem (5/5)

ROYAL INSTITUTE OF TECHNOLOGY

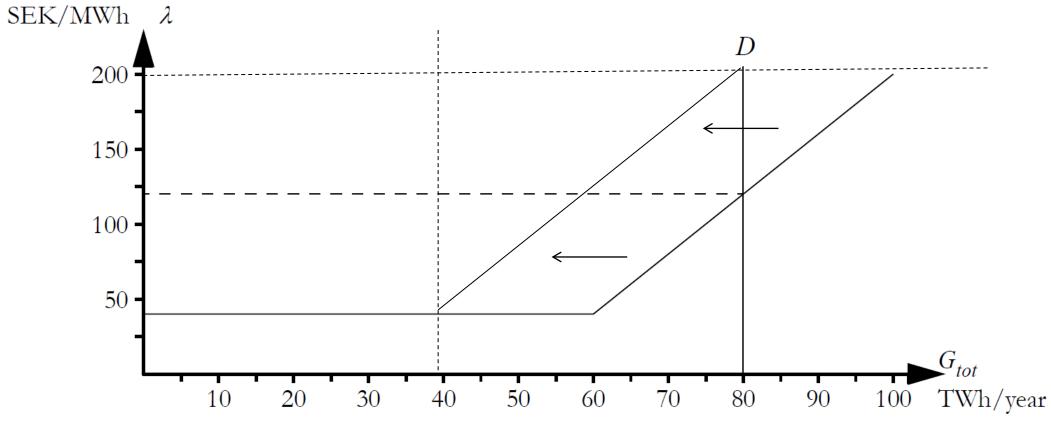


Figure 3.10 Supply and demand of the electricity market in example 3.5.

ROYAL INSTITUTE OF TECHNOLOGY

Time for "Lecture Assignments"

• On another slideshow...