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What functions can be Fourier transformed?

* The Fourier integral theorem:
— f(t) is sectionally continuous over —o < f <

— f(t)isdefinedas f(¢)= }Sig%[f(t+5)+f(t—5)]

— f(t) is amplitude integrable, that is, f |/ (0)|dt < o

1 o o0 Ny
Then the following identity holds: f(t) = —fff(z)e"y(z")dzdy
27T

—00 —00

« For which of the following functions does the above theorem hold?
f@=1
J(#) =cos(?)

(0, 1<0

TO=11 120

0 , 18 a rational number

(1) =1

\exp(—tz) , t 18 an irrational number
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What functions can be Fourier transformed?

So, many commonly used functions are not amplitude integrable, e.g.

f(Y)=cos(), fit)=exp(ir) and f(t)=1.

Solution: Use approximations of cos(?) that converge asymptotically
to cos(t) — details comes later on

» The asymptotic limits of functions like cos(t) will be used to define
generalised functions, e.g. Dirac 6-function.
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Dirac o-function

Dirac’s generalised function can be defined as:

o, x=0

5(x)={0,x¢0 8 }5(x)=1

Alternative definitions, as limits of well behaving functions, are shown shortly

Important example:

o 1
JLatroldi= 2 565

i:f(t;)=0

Proof: Whenever |f(?)|>0 the contribution is zero. For each ¢ = ¢, where
f(t,)=0, perform the integral over a small region ¢,— ¢ <¢ <¢, + ¢ (wWhere ¢
is small such f(#) = (¢- t) f°(t,) ). Next, use variable substitution to perform
the integration in x =f{?), then dt = dx /f’(t)) :

1
JLalrwya= 3 [ f(t) - 2 T

i:f(t;)=0 i:f(2;)=0
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Truncations and Generalised functions

« For approximate Fourier transform of f(z)=1, use truncation.

Truncation of a function f{7):

N[Ol <T N
fT()—{O > , such that f(7) = lim f; (7)
« Then for f(t)=1
sin(wT'/2)
F =
V(O =——

— When T— then this function is zero everywhere except at w=0 and its
integral is 2, i.e.

F {1}= Pm sm(a)/T; 2)
—® w

= 2.7t5(a))

— Note: F{1} exists only as an asymptotic of an ordinary function;
a generalised function.
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More generalised function

« An alternative to truncation is exponential decay
f,(t)=f(e™ | suchthat f() =" f,®

* Three important examples:
— f(t)=1 (alternative definition of d-function)
= 2710 (a))

Flro}-—2L = Ffi}=lim—"L -

2
w +7n =0 " +n

2nn

— The sign function sgn(t)

F{sgn(n} = "™ F{f,(Dsen(d)} = ™ w?’f’nz = 2ip lﬂ

The generalised function is the Cauchy principal value function:

1 , W l/w, for w=0
P—=lm———-=
w 10w +n 0 , forw=0
— Heaviside function H(1) .
I
F-H(?)=1lm
{ ()} =0 @+ in
This generalised function is often written as: 1 — lim 1

w+i0 1~0w+in
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Plemelj formula

« Relation between H(t) and sgn(t):
2H(t) =1+sgn(r)
with the Fourier transform:

1 |
w +i0 =g);—m6(a))

This is known as the Plemelj formula

— ltis important in describing resonant wave damping (see later lectures)
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Driven oscillator with dissipation

Example illustrating Plemelj formula: a driven oscillator with

eigenfrequency £ FfE)
Q f(t)=E(
Py (1) =E(1)
with dissipation coefficient v : d f(t) +2v GJ;(;) + Q% f(t) = E(t)

Fourier transform: (—a)2 —i2vw + Q° )f(a)) = E(w)

Solution: f(w) =

where Q =/Q% -2

Take limit when damping v goes to zero:

E(w) 1 ~ 1
2Q |w-Q+i10 w+Q+i0

E(w) _E(w) [ 1 1

—0’ —i2vo+ Q20 |w-Q+iv w+Q+iv

f ()=

Damping (see later lecture)
A
- ™

E 1 1
f(w )_%[ ( _Q)—go(w+g)—m6(a)—9)+in5(a)+9)

use Plemelj formula
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Physics interpretation of Plemej formula

For oscillating systems:
eigenfrequency 2 will appear as resonant denominator

1
S

Including infinitely small dissipation and applying Plemelj formula

P f(t) - e:imt

1 1

0-0Q+i0 w-0

—imS(a)—Q)

Later lectures on the dielectric response of plasmas:
When the dissipation goes to zero there is still a wave damping called

Landau damping, a collisionless damping, which comes from the 6-
function

"damping" ~ o (a)— Q)

10
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Square of d-function

.
-

To evaluate square of d-function . 4
t+t'=T
/' f'f'='T
> T2 T p .
[2n5 (w)] = dte dt' e N
T/2 T/2 e, A ™ =T

_ ! ' 4 N iw(t+t")
—de(t—t)de(t+t)e

= T2m5(a))

— Thus also the integral of the 82 goes to infinity as T — « |

— Luckily, in practice you usually find 6 2 in the form 82/ T, which is integrable!

11

13-01-24 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson




Outline

— Fourier transforms

« Fourier’s integral theorem

« Truncations and generalised functions
* Plemej formula

— Laplace transforms and complex frequencies

 Theorem of residues
« Causal functions
» Relations between Laplace and Fourier transforms

— Greens functions

 Poisson equation

« d’ Alemberts equation

 Wave equations in temporal gauge

— Self-study: linear algebra and tensors

13-01-24 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson

12




Laplace transforms and complex frequencies (Chapter 8)

« Fourier transform is restricted to handling real frequencies, i.e. not
optimal for damped or growing modes

— For this purpose we need the Laplace transforms, which allow us to
study complex frequencies.

 To understand better the relation between Fourier and Laplace
transforms we will first study the residual theorem and see it
applied to the Fourier transform of causal functions.
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The Theorem of Residues

R,

(z—2;)

Singular denominators : f(z) ~
— there is a pole at z;
— the numerator R; is the residue

The integral along closed contour in the complex plane
can be solved using the theorem of residues

Im(w)

[ f(2dz =27 Y R C//\\
C i *Re(w)
R =lim(z-z,)f(2) \Q%Poles z

z—>z; I

— where the sum is over all poles z; inside the contour

Example f(z)=1/z and C encircling a poles at z=0:

[ S (2)dz = {é dz =1f relf@ ird” do = lf id =2

" o
where z =re' dz = ire” do
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Causal functions

- Causal functions:
functions f, that “start” at t=0, i.e. f (t)=0 for t<O.

- Example: causal damped oscillation f,(f) = et cos(L2t), for >0

. i 1 1
F L = eV QtYdw = —
{3} _{e e cos(R)ae 2[w—£2—iy/2+w+£2—i)//2

— The two denominators are poles in the complex w plane
— Both poles are in the upper half of the complex plane Im(w)<0

Im(w)
‘/ poles
+7 +
»Re(w)

« Causal function are suitable for Laplace transformations

— to better understand the relation between Laplace and Fourier transforms;
study the inverse Fourier transform of the causal damped oscillator
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Causal functions and contour integration

» Use Residual analysis for inverse Fourier transform of the causal damped

oscillation i 1 1
FYUf())y=F'{=

« For t>0:

— et 0, for Im(w) >~ & |(,f|iiloo f.(w)~1/w —0

close contour with half circle Im(w)>0 >0
— Inverse Fourier transform is sum of residues from poles

fo=fe H L Zo(o)
¢ 2lw-Q+iy/2 w+Q+iy/2

. L1 ‘O _io—
_ —ZMERi _ —271715[6(’9 v -0 y/2)t]
i

 For t<0: t<0  Im()
— e 0, for Im(w) —-; + |+

close contour with half circle Im(w)<0 Re(w)
— No poles inside contour: f(t)=0 for t<0 C
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Laplace transform

« Laplace transform of function f{?) is
_ — 11 > -t
F(s)=L{f(t)} lim [* &™ f(¢)dt
— Like a Fourier transform for a causal function, but iw —

« Region of convergence:

S.

— Note: For Re(s)<0 the integral may not converge since the factor et diverges

— For function of the form f(¢) =¢”

then F(s) = f:e(v‘”’dt which can be integrated only if Re(s) > Re(v)

Thus, the Laplace transform is only valid for
Re(s) > Re(v)

Note: f(¢) =" means pole at s=v,
i.e. all poles to the right of region of convergence —

— Laplace transform allows studies of unstable modes; e"!!

L{ f(t) } converges!
Im(s) /
+
—+ Re(s)
+
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Laplace transform

» Laplace transform

o Im(s)
— — |1 —st A :
F(s)=L{f(Of=lim [ e™ f(r)dt .
 For causal function the inverse transform is: —++ N Re(s)
FO)=L{F$)} = [ e F(s)di T

— Here the parameter I" should be in the region of convergence, i.e. chosen such
that all poles lie to the right of the integral contour Re(s)=T..

— Causality: since all poles lie right of integral contour, L-/{ f(w) }(t)=0, for t<O0.

Proof: see inverse Fourier transform fo causal damped harmonic oscillator
(Hint: close contour with semicircle Re(s)>0 ;)

— Thusu, only for causal function is there an inverse f(f) = L{L‘l{f(t)}}

« NOTE: Laplace transform allows studies of unstable modes; e"!!

13-01-24
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Complex frequencies

Formulas for Laplace and Fourier transform very similar
— Laplace transform for complex growth rate s / Fourier for real frequencies w
— For causal function, Laplace transform is more powerful
— For causal function, Fourier transforms can often be treated like a Laplace transform

Let s=iw, provide alternative formulation of the Laplace transform

n Iim e yo
F)=L{fy=___ [ ™" fwdt=]_ e fnd

Here w is a complex frequency
The inverse transform for causal functions is

f) =L {F@} = [ e o Im(o)

— for decaying modes all poles are above the real axis and I'=0. +i +

Thus, the Laplace and Fourier transforms are the same for
amplitude integrable causal function, only the Laplace transform
is defined for complex frequencies.
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Greens functions (Chapter 5)

Greens functions: technique to solve inhomogeneous equations
Linear differential equation for f given source S:

L(z)f(z) =5(2)
— Where the differential operator L is of the form:
dn dn -1
L=A 0 +A"1d”1+ A,
Define Greens function G to solve:
L(2)G(z,z2')=0(z-2Z2")
— the response from a point source — e.g. the fields from a particle!
Ansatz: given the Greens function, then there is a solution:

F(z) =f G(z,z")S(z")dZ

Proof:

L(z2)F(z) = fL(z)G(z,Z')S(z')dZ'= fa(z —z")S(z2")dz'= S(z2)

13-01-24 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson
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How to calculate Greens functions?

For differential equations without
explicit dependence on z

G(z,2')=G(z-72')
Fourier transform from z-z’ to &
L(2)G(z-7)=0(z-2")

J

L(ik)G(k) =1

J

1
L(ik)

Inverse Fourier transform

G(k) =

G(z,z") = — fG(k) e gy =

Example:

(iﬂzz)G(m) S(t-t")
ot

l

(—a)2 + Qz)G(a)) =1

J

1
G(w) = -

w? -Q°

—lk(z—z')dk

27T f L(zk)

Solve integral!
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Greens function for the Poisson’s Eq. for static fields

« Poisson’s equation
£,V P(X) = —p(x)

« Green’s function

-, V°G(x —x") = 8(x — x")

|| G(ky =1
0
G(x) = ! f L owx g3k
g0 ) |k|2
1
C00 = e

 Thus, we obtain the familiar solution: a sum over all sources

1 3., P(X)
P(x) = €ofd X

45T |X — X'|
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Greens Function for d’Alembert’s Eq. (time dependent field)

« D’Alembert’s Eq. has a Green function G(t,x)

1 9
(TE - VZ)G(t -1, X —x') =ud(r - )%’ (x - x")
C

* Fourier transform (¢ - ¢',x —=x') —(w,k) gives

(w—2 — || ) G(w,K) = u,

&
— U,
G(w,K) =
/e = |k[
G(t-t,x-X)= a 5(t—t'-x = x'|/c)
47|x — X

— Information is propagating radially away from the source at
the speed of light

13-01-24 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 24




Greens Function for the Temporal Gauge

Temporal gauge gives different form of wave equation
2
L A@,K) + kxkx A(@,k) = —ud(@,k)
C

a)Z
[(_2 - |k|2 )617 +kik; | A (w0,K) = —poJ (0,K)

C

2
HoC

2
aw

— Different response in longitudinal : k- A(w,K) = — K- -J(w,Kk)

— and transverse directions:
k x A(w,K) = ——H0
a)2/02 —|k|

To separate the longitudinal and transverse parts the Greens function
become a 2-tensor G,

T kxJ(w,k)

6()2

2
Solution has poles w= % |k| ¢ > |G, (w,k) = - —H ((S . +a)—2kl.kj)
C

w2/02 —‘k‘z g
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Self-study: Linear algebra

 The inner product .

b, ;
a°b=|:a1 a, a3] b, =a1b1+a2b2+a3b3=zajbjEajbj
-b 3 a
— The repeated indexed are called “dummy” indexes Einsteins summation convention:
"always sum over repeated indexes”
- Theouter product ] _
b, ab, ab,  ab,
b&®a=|b, [a1 a, a3] =|ab, ab, asb,
D, | \ab; a,b; a;b;

— Express aand b in a basis [e,, e,, e4]

3 3
b®a = Eaiei ®Ebjej - bjai[ei ®ej] <—— Note: 9 terms
i=1

j=1

0] 0 0 O]

- %9 le,®e,]=|1][0 0 1]=]0 0 1
0 0 0 0
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Self-study: Vectors

« Vectors are defined by a length and a direction.

— Note that the direction is independent of the

coordinate system, thus the components depend A
on the coordinate system F

F = re, = Fi'ei'
| F,
— thus in the (x, y) systems the components may be: =
FZ
— then for 30 degrees between the coordinate F' V1/2
systems (u, v) components are: =
y (U, v) comp F,'| |32

The relation between vectors are given by transformation matrixes
— if transformation is a rotation then transformation matrixes

Rll R12
R21 R22

cos(v) —sin(v)

F/=R;F, : [R;]=

sin(v) cos(v)
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Self-study: Tensors

Tensors are also independent of coordinate system
Examples:

— A scalar is a tensor of order zero.
— A vector is a tensor of order one.

Tensors of order two in 3d space has 3 directions and 3 magnitudes
— For a given coordinate system a tensor T of order two (or a 2-tensor)

can be represented by a matrix

Ly 1, 1
T ]—;_]el®e _Y-l']ele] ’ I:T;']':IE 7;1 7-'22 7—'23
b T, Ty

Transformation of 2-tensors

— Transformation the basis: F = F.[Rik][ka]_lem = Fk'[ka]_lem =

l

1-1

e’ -R e. : T=Tee.

| " In | J° g

~

=T, [R R ] eu[R R e, WD T)=RTR,

= [R.]T; :Rﬂ]em'en'E Iye,e,
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