Positive random variable $X \geq 0$

□ DISCRETE RANDOM VARIABLE

Probability function: $p_k = P(X = k)$

Properties:
$$p_k \ge 0$$
; $\sum_{k=0}^{\infty} p_k = 1$
Probability distribution of X:

$$F_X(x_i) = P(X \le x_i) = \sum_{k=0}^{i} p_k$$

Properties:
$$F_X(x_i) \ge 0$$
; $F_X(0) = p_0$; $F_X(\infty) = 1$;

$$F_X(x_1) \le F_X(x_2)$$
 if $x_1 \le x_2$

Expected (mean) value (first moment) of X:

$$E[X] = m = \sum_{i=1}^{\infty} x_i p$$

E[X] = m =
$$\sum_{i=0}^{\infty} x_i p_i$$

Second moment of X: E[X²] = $\sum_{i=0}^{\infty} x_i^2 p_i$

Variance of X:
$$Var[X] = E[(X-m)^2] = E[X^2] - m^2$$

Squered coefficient of variance: $C^2 = Var[X]/m^2$

□ CONTINUOUS RANDOM VARIABLE

Probability density function: $f_X(x)$

Properties:
$$f_X(x) \ge 0$$
; $\int f_X(u) du = 1$

Probability distribution of X:

$$F_X(x_i) = P(X \le x) = \int_{-\infty}^{x} f_X(u) du$$

Properties:
$$F_X(x_i) \ge 0$$
; $F_X(0) = 0$; $F_X(\infty) = 1$;

$$F_X(x_1) \le F_X(x_2)$$
 if $x_1 \le x_2$

Expected (mean) value (first moment) of X:

$$E[X] = m = \int_{-\infty}^{\infty} x f_X(x) dx$$

Second moment of X:
$$E[X^2] = \int_0^\infty x^2 f_X(x) dx$$

Variance of X:
$$Var[X] = E[(X-m)^2] = E[X^2] - m^2$$

Squered coefficient of variance: $C^2 = Var[X]/m^2$

Squered coefficient of variance: C2=Var[X]/ m2

F4

Lena Wosinska KTH/ICT/ONLab

1

Some distributions of **X**

□ DISCRETE X

Geometric distributed X:

$$p_k = P(X = k) = a^{(k-1)} (1-a); 0 < a < 1$$

$$E[X] = 1/a$$

Poisson distributed X:

$$p_k = P(X = k) = \frac{a^k}{k!}e^{-a}$$

$$E[X] = a$$

□ CONTINUOUS X

Exponential distributed X:

$$f_X(x) = a e^{-ax}$$
; $0 < a < 1$

$$E[X] = 1/a$$

Erlang_r distributed X:

$$f_X(x) = \frac{a^n}{(n-1)!} x^{n-1} e^{-ax}$$

$$E[X] = n/a$$

F2

Lena Wosinska KTH/ICT/ONLab

Exp. distributed random variable X

Probability density function: $f_X(t)$	μ e -μt
Probability distribution: $F_X(t) = P(X < t)$	1 − e ^{-μt}
Intensity function	μ
Expected (mean) value: E[X]	1/μ
Laplace transform of $f_X(t)$	$\frac{\mu}{s + \mu}$

F2

Lena Wosinska KTH/ICT/ONLab

3

Transforms

(moment generating functions)

DISCRETE X

 \mathcal{Z} – transform of p_i

$$P(z) = E[z^i] = \sum_{i=0}^{\infty} z^i p_i$$

$$\frac{dP(z)}{dz} = \sum_{i=0}^{\infty} i \cdot z^{i-1} p_i$$

$$\frac{d^2P(z)}{dz^2} = \sum_{i=0}^{\infty} i(1-i)z^{i-2}p_i$$

$$E[X] = P'(z) \text{ for } z = 1$$

$$E[X^2] = P''(z) + E[X] \text{ for } z = 1$$

CONTINUOUS X

 $\operatorname{ \begin{tabular}{l} \mathscr{L}- transform of } f_X(x) \\$

$$F^*(s) = E[e^{-sX}] = \int_0^\infty e^{-sX} f_X(x) dx$$

$$\frac{d F^*(s)}{ds} = \int_0^\infty -x e^{-sx} f(x) dx$$

$$\frac{d^2 F^*(s)}{ds} = \int_0^\infty x^2 e^{-sx} f(x) dx$$

$$\frac{d^{2} F^{*}(s)}{ds^{2}} = \int_{0}^{\infty} x^{2} e^{-sx} f(x) dx$$

$$E[X] = -F^*'(s)$$
 for $s = 0$

$$E[X^2] = F^*$$
 ''(s) for $s = 0$

F2

Lena Wosinska KTH/ICT/ONLab

Classification of stochastic processes

□ Stochastic process SP: X(t,ω)

Random variable $oldsymbol{X}$

Discrete X

Continuous X

- Discrete-time SP (discrete t): $X(t,\omega)$
- Continuous-time SP (continuous t): $X(n,\omega)$
- Markov process (MP): a memoryless SP
- □ Markov chain (MC): MP with discrete X
 - Discrete time MC (**DTMC**)
 - Continuous time MC (CTMC)
 - □ Birth-death process (**B-D** process), a special case of CTMC
 - Poisson process

F4

Lena Wosinska KTH/ICT/ONLab

5

Markov process

- Markov process
 - memoryless stochastic process
 - future depends on the present state only
- Continuous-time Markov chains
 - transition intensity matrix-stationary solution
 - global and local balance equations
- Birth-death process
 - transitions only between neighboring states
- Poisson process
 - number of events in a time interval has Poisson distribution
 - time intervals between events has exponential distribution

F

Lena Wosinska KTH/ICT/ONLab

Kendall's notation

A/B/X/Y/Z

- A: arrival process
- □ **B**: service time
- X: number of servers
- Y: maximum occupancy (not indicated if unlimited buffer)
- Z: service order or other specifications (not indicated if FCFS and no further spec.)
- □ **A** and **B** (arrival process and service time) can be:
 - *M*: Markov (memoryless): exponential distributed time
 - **D**: deterministic
 - E_r : r exponential distributed steps
 - H_k : hyper exponential with k branches
 - **G**: general (but known)

F4

Lena Wosinska KTH/ICT/ONLab