Why tensors in this course?

- A key concept in this couse is "the response of a media to electromagnetic fields"
- Given an electric field \mathbf{E} this response can be described in term of the relation with the induced current \mathbf{J}.
- For linear media the Fourier transformed relation can often be described by a conductivity tensor $\boldsymbol{\sigma}$:

$$
\mathbf{J}=\sigma \cdot \mathbf{E} \quad \text { or } \quad J_{i}=\sigma_{i j} E_{j}
$$

- Example: In isotropic media the tensor I diagonal (no tensor description needed)

$$
\sigma_{i j}=\sigma_{0} \delta_{i j} \quad \longleftrightarrow \mathbf{J}=\sigma_{0} \mathbf{E} \quad \text { or } \quad J_{i}=\sigma_{0} E_{i}
$$

- Example: Uniaxial crystal conducts differently along the perpendicular to the crystal-plane. If the normal to the crystal-plane is in the z-directions then

$$
\sigma_{i j}=\left[\begin{array}{ccc}
\sigma_{\|} & 0 & 0 \\
0 & \sigma_{\|} & 0 \\
0 & 0 & \sigma_{\perp}
\end{array}\right]=\sigma_{\|} \delta_{i j}+\left(\sigma_{\perp}-\sigma_{\|}\right) \delta_{i 3} \delta_{j 3} \longmapsto J_{1,2}=\sigma_{\| \|} E_{1,2} \& J_{3}=\sigma_{\perp} E_{3}
$$

- In magnetised media the response often has off-diagonal components

$$
\sigma_{i j}=\left[\begin{array}{ccc}
\sigma_{11} & \sigma_{21} & 0 \\
\sigma_{12} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{array}\right]
$$

Why tensors in this course?

- Example: Consider a crystal with the following conductivity

$$
\sigma=\sigma_{0}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and an electric field

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{T}
$$

The current is then

$$
\mathbf{J}=\sigma_{0}\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]^{T}
$$

i.e. NOT in the same direction as the E-field

Rough guide to this course

- Description of the dielectric response : $\mathbf{J}=\sigma \bullet \mathbf{E}$
- Wave equation for dispersive media, e.g. crystals and plasmas
- Dissipation from e.g. collisions or Landau damping (Plemej formula)
- Study damping: Assume small damping and expand
- $0^{\text {th }}$ order: undamped plane wave (no dissipation)
- $1^{\text {st }}$ order: calculate damping rate of the wave
- Next: insert the response $\mathbf{J}^{*} \cdot \mathbf{E}=\mathbf{E}^{*} \cdot \sigma \cdot \mathbf{E}$ in the energy conservation equation to study
- spatial and temporal damping
- non-homogeneous media
- emission processes

