

Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

Lecture 5 January 31, 2013

Carlo Fischione Associate Professor of Sensor Networks

e-mail: <arlofi@kth.se</arlofi/http://www.ee.kth.se/~carlofi/

KTH Royal Institute of Technology Stockholm, Sweden

Course content

- Part 1
 - ➤ Lec 1: Introduction
 - > Lec 2: Programming
- Part 2
 - > Lec 3: The wireless channel
 - > Lec 4: Physical layer
 - > Lec 5: Mac layer
 - > Lec 6: Routing
- Part 3
 - > Lec 7: Distributed detection
 - > Lec 8: Distributed estimation
 - > Lec 9: Positioning and localization
 - > Lec 10: Time synchronization
- Part 4
 - > Lec 11: Networked control systems 1
 - Lec 12: Networked control systems 2
 - > Lec 13: Summary and project presentations

Previous lectures

Application

Presentation Session

Transport

Routing

MAC

Phy

- How information is modulated and transmitted over the wireless channel?
- What is the successful probability to receive bits?

Today's lecture

<u>Application</u>

Presentation

Session Transport

Routing

MAC

Phy

- When a node gets the right to transmit messages?
- What it the mechanism to get such a right?

What is the Medium Access Control (MAC)?

What are the options to design MACs?

What is the MAC of IEEE 802.15.4?

- Definition and classification of MACs
 - TDMA, FDMA, CSMA, ALHOA
 - Hidden and exposed terminals
- The IEEE 802.15.4 protocol

Medium Access Control - MAC

- MAC: mechanism for controlling when sending a message (packet) and when listening for a packet
- MAC is one of the major component for energy expenditure in WSNs
 - Receiving packets is about as expensive as transmitting
 - Idle listening for packets is also expensive

Typical power consumption of a node

Problems for MACs

- 1. Collisions: wasted effort when two packets collide
- 2. Overhearing: waste effort in receiving a packet destined for another node
- 3. Idle listening: sitting idly and trying to receive when nobody is sending
- 4. Protocol overhead

a packet

The hidden terminal problem

- Terminal, another word for node
- Hidden terminal problem:
 - node A wants to send a packet to B
 - node C wants to send a packet to D
 - node A does not hear transmitter C sending packets that can be received by B and D

The exposed terminal problem

distance within which a transmitter can be heard/sensed at a receiver

Exposed terminal problem:

- B wants to send packet to A
- C wants to send packets to D
- transmitter B hears transmitter C which is not causing collisions at the receiver A. A is not in the transmit range of C
- transmitter C hears B, but D is not in the transmit range of B

Important MACs for WSNs

- TDMA Time Division Multiple Access
 - Time is divided into time slots
 - > Every node is assigned to transmit at a time slot
- FDMA Frequency Division Multiple Access
 - ➤ As TDMA, but is the carrier frequency to be divided into slots
- CSMA Carrier Sense Multiple Access
 - ➤ A node listens (channel assessment) if the channel if free or busy from other transmissions
 - ➤ If free, transmit the packet; if busy, back-off the transmission
- ALHOA
 - ➤ If a node has a packet, it draws a random variable and transmits according to the outcome

Schedule based MAC

Contention based MAC

- A central node decides the TDMA schedules
 - simple and no packet collisions
 - burdens the central station
 - not feasible for large networks
- TDMA is useful when network is divided into smaller clusters
 - In each cluster, MAC can be controlled at local head

Slotted ALHOA

n number of nodes attempting to transmit

- The slotted ALHOA works on top of TDMA
- Nodes are synchronized
- p probability that a node can transmit a packet
- Probability of successful packet transmission
- $p(1-p)^{n-1}$ $n \cdot p(1-p)^{n-1}$ Probability that a slot is taken

- Schedule-based MACs (TDMA, FDMA)
 - ➤ A **schedule** regulates which node may use which slot at which time
 - Schedule can be **fixed** or computed **on demand**
 - Collisions, overhearing, idle listening no issues
 - ➤ Time synchronization needed
- Contention-based MACs (CSMA, ALHOA)
 - Based on random access
 - ➤ Risk of packet collisions
 - ➤ Mechanisms to handle/reduce probability/impact of collisions required

More in general

- Definition and classification of MACs
- The IEEE 802.15.4 protocol
 - Introduction
 - Physical layer
 - MAC layer

IEEE 802.15.4 protocol architecture

- Now we study the MAC of the standard IEEE 802.15.4
- IEEE 802.15.4 is the de-facto reference standard for low data rate and low power WSNs
- Characteristics:
 - ➤ low data rate for ad hoc self-organizing network of inexpensive fixed, portable and moving devices
 - high network flexibility
 - > very low power consumption
 - > low cost

The IEEE 802.15.4 protocol

IEEE 802.15.4 specifies two layers

Physical layer
2.4Ghz global, 250Kbps
915MHz America, 40Kbps
868MHz Europe, 20Kbps

➤ Medium Access Control (MAC) layer

IEEE 802.15.5 does not specify the routing

IEEE 802.15.4 networks

- IEEE 802.15.4 network composed of
 - ➤ full-function device (FFD)
 - reduced-function device (RFD).
- A network includes at least one FFD
- The FFD can operate in three modes:
 - ➤ a personal area network (PAN) coordinator
 - > a coordinator
 - > a device

RFD can only talk to an FFD

IEEE 802.15.4 network topologies

- 3 types of topologies
 - > star topology
 - > peer-to-peer topology
 - > cluster tree

Cluster-tree topology

IEEE 802.15.4 physical layer

- Frequency bands:
 - 2.4 2.4835GHz GHz, global, 16 channels, 250Kbps
 - 902.0 928.0MHz, America, 10 channels, 40Kbps
 - 868 868.6MHz, Europe, 1 channel, 20Kbps
- Features of the PHY layer
 - > activation and deactivation of the radio transceiver
 - transmitting and receiving packets across the wireless channel
 - energy detection (ED, from RSS)
 - ➤ link quality indication (LQI)
 - > clear channel assessment (CCA)
 - > dynamic channel selection by a scanning a list of channels in search of beacon, ED, LQI, and channel switching

IEEE 802.15.4 physical layer

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters		
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols
868/915	868-868.6	300	BPSK	20	20	Binary
	902–928	600	BPSK	40	40	Binary
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS
	902–928	1600	ASK	250	50	5-bit PSSS
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal
	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal
2450	2400–2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal

Physical layer data unit

		Octets			
			variable		
Preamble	SFD	Frame length (7 bits)	Reserved (1 bit)	PSDU	
SI	HR	PI	PHY payload		

SFD indicates the end of the SHR and the start of the packet data

PHR: PHY header

PHY payload < 128 byte

- The MAC provides two services:
 - > data service
 - > management service
- MAC features: beacon management, channel access, GTS management, frame validation, acknowledged frame delivery, association and disassociation.

Superframe structure:

- format defined by the PAN coordinator
- bounded by network beacons
- divided into 16 equally sized slots

Beacons

- synchronize the attached nodes, identify the PAN and describe the structure of superframes
- > sent in the first slot of each superframe
- turned off if a coordinator does not use the superframe structure

Superframe portions: active and an inactive

- inactive portion: a node does not interact with its PAN and may enter a low-power mode
- active portion: contention access period (CAP) and contention free period (CFP)
- Any device wishing to communicate during the CAP competes with other devices using a slotted CSMA/CA mechanism
- ➤ The CFP contains guaranteed time slots (GTSs).

IEEE 802.15.4 CSMA/CA

CFP

GTS

CAP

 A Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA) algorithm is implemented at the MAC layer

GTS

Inactive

- If a superframe structure is used in the PAN, then slotted CSMA-CA is used in the CAP period
- If beacons are not used in the PAN or a beacon cannot be located in a beacon-enabled network, unslotted CSMA-CA is used

- Each device has 3 variables: NB, CW and BE.
- NB: number of times the CSMA/CA algorithm was required to backoff while attempting the current transmission.
 - ➤ It is initialized to 0 before every new transmission.
- BE: backoff exponent
 - ➤ how many backoff periods a device shall wait before attempting to assess the channel.
- CW: contention window length (used for slotted CSMA/CA),
 - ➤ Is the number of backoff periods that need to be clear of activity before the transmission can start.
 - ➤ It is initialized to 2 before each transmission attempt and reset to 2 each time the channel is assessed to be busy.

Flow diagram to transmit a packet with CSMA/CA in the modalities slotted (left, also called beacon modality) and unslotted (right, also called beaconless modality)

Beacon

Guarantee Time Slot, GTS

CFP

GTS

 $BI = aBaseSuperframeDuration*2^{BO}$ symbols

Inactive

GTS

The PAN coordinator may allocate up to 7 GTSs.

 $SD = aBaseSuperframeDuration*2^{SO}$ symbols

A GTS can occupy more than one slot period.

CAP

- SO <15. If SO=15, the superframe will not be active anymore after the beacon
- BO < 15. If BO=15, the superframe is ignored

- A GTS allows a device to operate within a portion of the superframe that is dedicated exclusively to it
- A device attempts to allocate and use a GTS only if it is tracking the beacons
- GTS allocation:
 - undertaken by the PAN coordinator only
 - ➤ a GTS is used only for communications between the PAN coordinator and a device
 - the GTS direction is specified as either transmit or receive
 - > a single GTS can extend over one or more superframe slots

Uplink MAC: beacon and non beacon-enabled

Communication to a coordinator in a beacon-enabled network

Communication to a coordinator in non-beacon-enabled network

Downlink MAC: Beacon and non-beacon-enabled

From a coordinator in a beacon-enabled PAN

From a coordinator in a nonbeacon-enabled PAN

Conclusions

Application
Presentation
Session
Transport
Routing

MAC Phy

- We have seen a MAC classification,
 - > TDMA, ALHOA, CSMA
- Seen in detail the most popular protocol for WSNs, IEEE 802.15.4
- Identifying interdependencies between MAC protocol and other layers/applications is difficult
 - ➤ Which is the best MAC for which application?
 - ➤ Need of a "MAC engine" that optimally selects the best MAC for given conditions

- Now that we know how nodes get the right to access the wireless medium, we would like to see how a message is routed over possible paths
- Routing protocols
 - How a node decides to route a packet?
 - What are the mechanisms to get such a decision?