SOLUTION 4.7

Detection in a Rayleigh fading channel
We have

P(e) = E[Q(v/2[h[2SNR)],
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In the first step we take into account that |h| is a Rayleigh random variable; i.e., it has the density %e%

and hence its squared magnitude |h|? is exponentially distributed with density ?126;7;, x > 0. Remember that
according to the question assumptions ¢ = 1. Moreover, the third step follows from changing the order of
integration.

Now, for large SNR, Taylor series expansion yields

SNR ) 1 L0 1 L 1
1+ SNR 2SNR SNR?2 2SNR

which implies
P~ sk

SOLUTION 4.8

Average error probability for Log-normal fading
First, we present a short summary of the Stirling approximation. A natural way of approximating a function

is using the Taylor expansion. Specially, for a function f(€) of a random variable 6 having mean x and variance

o2, using the Taylor expansion about the mean we have
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By taking expectation

E{7(0)} ~ (1) + 3/ (n)o

However, in Stirling approximation one can start with these differences
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then, taking the expectation we have
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It has been shown that 4 = /3 yields a good result. So we obtain Q(v). Given a log-normal random variable

z with mean y1, and variance o2, we calculate the average probability of error as the average of Q(7). Namely,

E{QE)} ~ Qi) + gQUs + Vo) + (QU — VEo)
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