
SOLUTION 4.7
Detection in a Rayleigh fading channel
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In the first step we take into account that |h| is a Rayleigh random variable; i.e., it has the density x
σ2 e

−x2

2σ2

and hence its squared magnitude |h|2 is exponentially distributed with density 1
σ2 e

−x
σ2 , x ≥ 0. Remember that

according to the question assumptions σ = 1. Moreover, the third step follows from changing the order of
integration.
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SOLUTION 4.8
Average error probability for Log-normal fading

First, we present a short summary of the Stirling approximation. A natural way of approximating a function
is using the Taylor expansion. Specially, for a function f(θ) of a random variable θ having mean μ and variance
σ2, using the Taylor expansion about the mean we have
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By taking expectation
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However, in Stirling approximation one can start with these differences
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then, taking the expectation we have
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It has been shown that h =
√
3 yields a good result. So we obtain Q(γ). Given a log-normal random variable

z with mean μz and variance σ2
z , we calculate the average probability of error as the average ofQ(γ). Namely,
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