

Lecture 7

Etching

- Etching of thin films and sometimes the silicon substrate are very common process steps.
- Usually selectivity, and directionality are the first order issues.

Etching - Overview

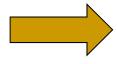
- Basic Terminology
- Wet Etching
- Dry / Plasma Etching
 - Mechanisms
 - Example
 - Reactor Designs
- Summary and Appendix

- 1. Etch rate
- 2. Selectivity
- 3. Anisotropy
- 4. Uniformity / Homogeneity

Etch rate: r

- Speed at which ethcing occurs
- Typical unit: r [nm/min]

Selectivity: S


Ratio of two etch rates

$$S = \frac{r_1}{r_2}$$

Example 1:

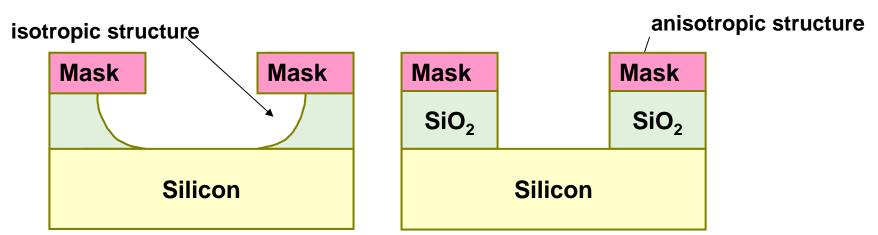
 SiO_2 etching with hydrofluoric acid (HF): SiO_2 + 6 HF \rightarrow H_2SiF_6 + 2 H_2O

- A. Determine the etch time for a 1,2 μ m thick SiO₂ film with r_{SiO2} = 400 nm/min \rightarrow 3 min.
- B. How thick should the resist mask be if the selectivity is $S_{SiO2/resist} = 4$?

Etch rate and selectivity are crucial for defining masks! (Photo- or "Hard"masks)

BOE: buffered oxide etching

BHF: buffered HF



NH₄F buffer: Help to prevent depletion of

F- → decrease etch rate of photoresist

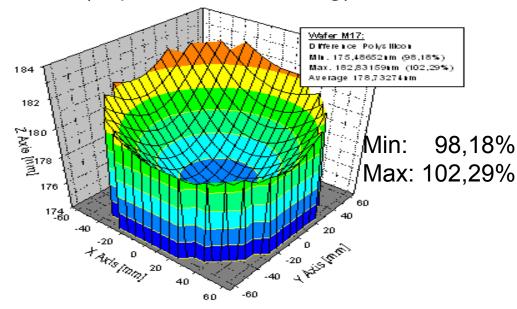
Anisotropy A

- Isotropic etching removes material equally in all directions
 - → Undercut of the mask

Anisotropic etching removes material only perpendicular to the surface
 → accurate transfer of the mask pattern

Anisotropy:
$$\frac{\text{vertical etch rate - horizontal etch rate}}{\text{vertical etch rate}}$$
 $A = 1 - \frac{r_{hor}}{r_{vert}}$

Etching: Basic Terminology *Uniformity / Homogeneity*


- Measures the distribution of the etch rate
 - □ Wafer to wafer, esp. for multi-wafer processing
 - □ Across one wafer (e.g. center vs. edge)

- □ Has to be considered when determining etching time (e.g. overetching)
- □ Production: Matching production tools (esp. litho and etching)

$$U = \frac{R_{\text{high}} - R_{\text{low}}}{R_{\text{high}} + R_{\text{low}}}$$

R_{high}: Max etch rate R_{low}: Min etch rate

Etching Performance Parameters

Etch Rate R	The film thickness being etched per unit time. <i>R</i> has significant effects on throughput.	
Etch Uniformity	Variation of etch rate throughout one wafer, multiple wafers or multiple batches of wafers	
Selectivity S	The ratio of the etch rates between two different materials	
Anisotropy A	Etching directionality $A=0$, isotropic; $A=1$, anisotropic	
Undercut	Unilateral overetching	

Pattern Transfer =Lithography + Etching

Two Critical Issues:

>Selectivity

Etching rate of material being etched

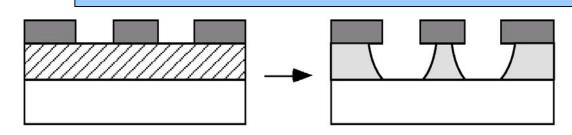
$$S = \frac{r_1}{r_2}$$

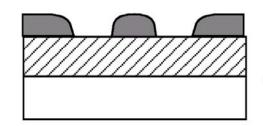
Etching rate of masking material or the material below the film

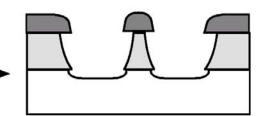
a)

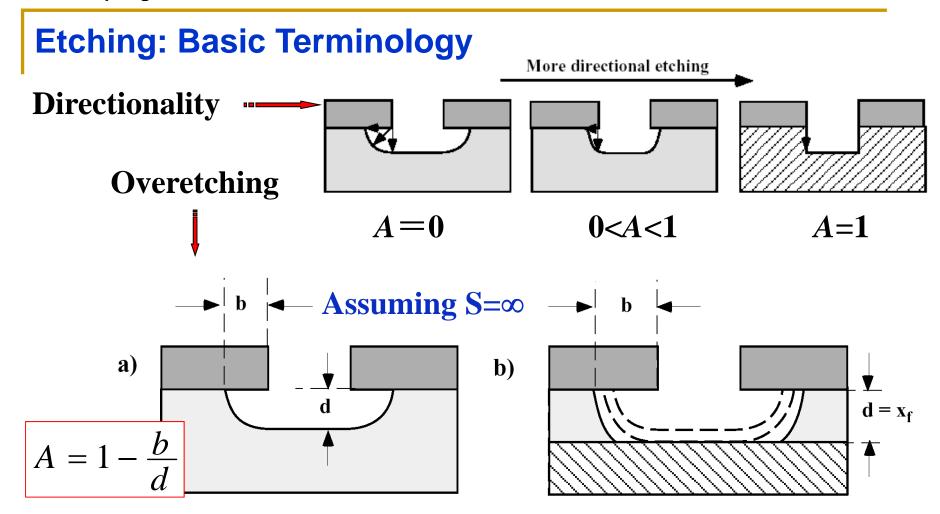
b)

Silicon Etching


Pattern Transfer Demo


> Directionality:


isotropic/anisotropic


 $A = 1 - \frac{r_{lat}}{r_{vert}}$ Lateral etch rate

Vertical etch rate

Uniformity/non-uniformity
$$U = \frac{R_{high} - R_{low}}{R_{high} + R_{low}} \frac{R_{high}$$
: Max etch rate R_{low} : Min etch rate

Etching - Overview

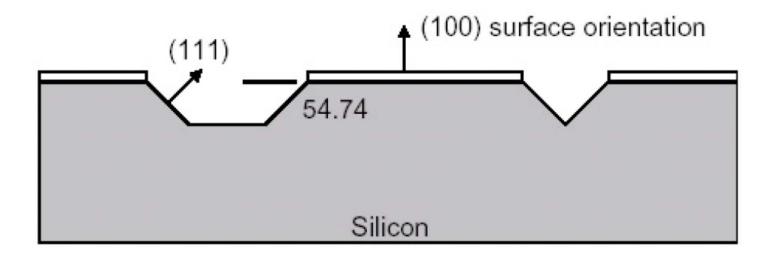
- Basic Terminology
- Wet Etching
- Dry / Plasma Etching
 - Mechanisms
 - Example
 - Reactor Designs
- Summary and Appendix

Example 2: Etch Si using HNO₃ and HF (HNA)

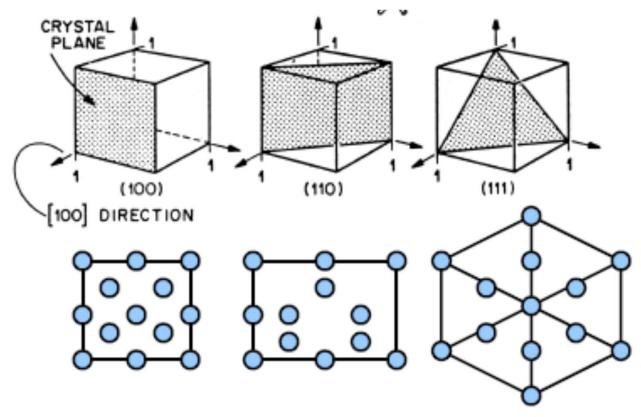
$$Si + HNO_3 + 6HF \rightarrow H_2SiF_6 + HNO_2 + H_2O + H_2$$

Isotropic

Example 3: Etch Si₃N₄ using hot phosphoric acid


$$Si_3N_4 + H_3PO_4 + H_2O \rightarrow NO \uparrow + NO_3^- + H_2PO_4^- + H_2SiO_3$$

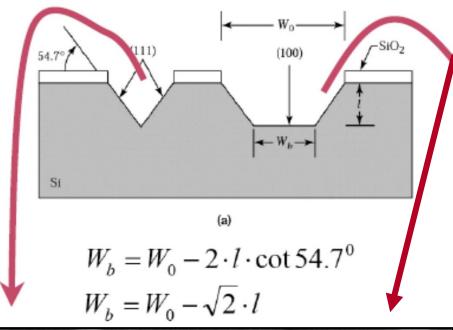
Example 4: Etch Si using KOH

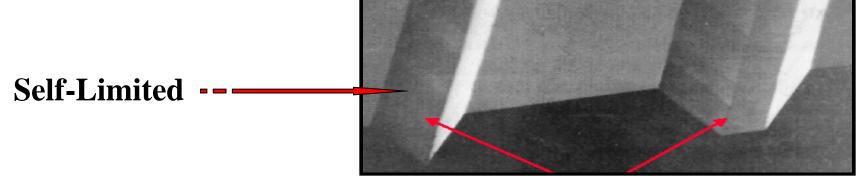

Anisotropic

$$Si + 2OH^{-} + 4H_{2}O \Rightarrow Si(OH)_{2}^{++} + 2H_{2} + 4OH^{-}$$

Anisotropic wet etching results from surface orientation

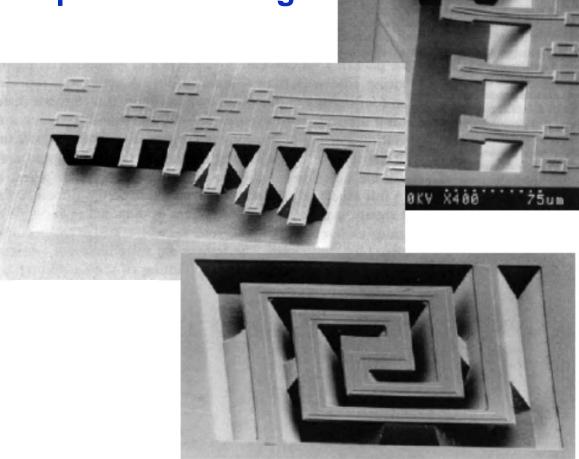
Example 3: Etch Si using KOH




Atomic density: <111> > <110> > <100>

Etch rate: $R_{(100)} \cong 100 R_{(111)}$

Example 3: Etch Si using KOH



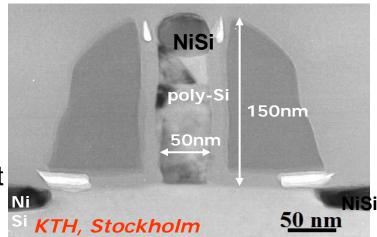
Wet Etching: Applications

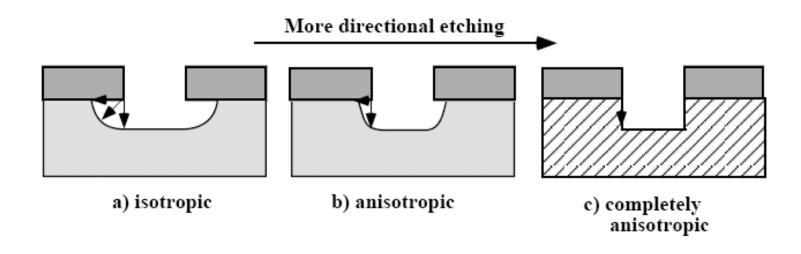
MEMS (MicroElectroMechanical Systems)
Made from Si Anisotropic Wet Etching

Wet Etching: Drawbacks

In the manufacture of large-scale electronic ICs, wet etching is being replaced by dry etching.

- (1) Wet etching is mostly isotropic.
- (2) Wet etching has poor resolution.
- (3) Wet etching depends on a lot of corrosive chemicals, which are harmful to human bodies and environments.
- (4) Wet etching needs a large number of chemical reagents to wash away the residues. Non-economical!!


Etching - Overview


- Basic Terminology
- Wet Etching
- Dry / Plasma Etching
 - Mechanisms
 - Example
 - Reactor Designs
- Summary and Appendix

Etching: Requirements at the Nanoscale

Etch Requirements at the Nanoscale:

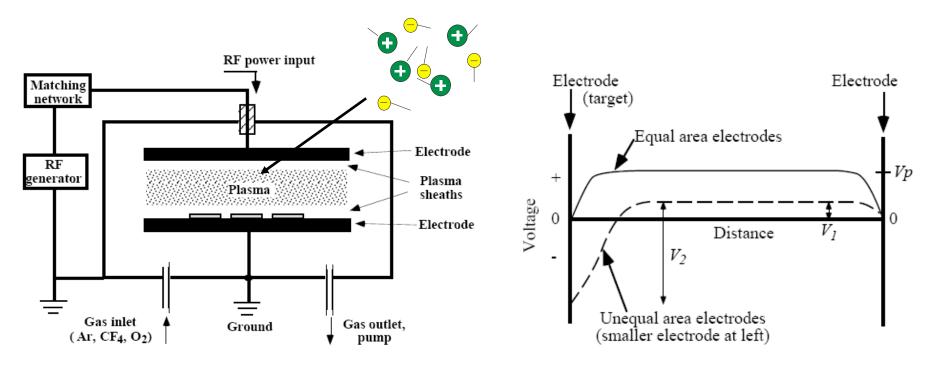
- 1. **Obtain desired profile** (sloped or vertical)
- 2. *Minimal undercutting* or bias
- 3. **Selectivity** to other exposed films and resist
- 4. Uniform and reproducible
- 5. Minimal damage to surface and circuit
- 6. Clean, economical, and safe

Etching: Requirements at the Nanoscale

	Reactive neutral molecules Mask	Ions (z.B. Ar+)	
	chemical	physical	
Selectivity	++		
Anisotropy	(<<1)	++ (~1)	
Examples	liquid, steam or plasma	lon bombardment ("sputter")	

How can we combine chemical and physical components? Plasma contains neutral radicals AND positive lons!

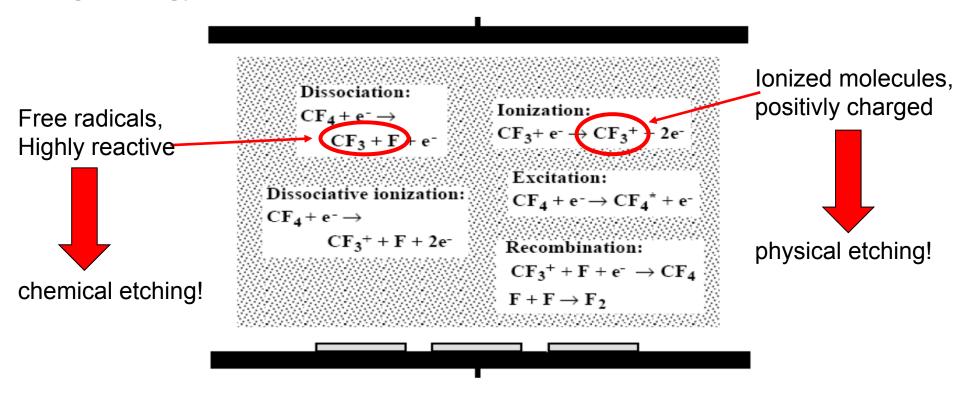
Plasma


Plasma

The 4th aggregate state (in increasing excitation)

solid	liquid	gaseous	PLASMA
Ice	Water	Steam	lonized Gas
H ₂ O	H ₂ O	H ₂ O	H ₂ → 2H ⁺ + 2e ⁻
T < 0°C	0°C < T < 100°C	T > 100°C	T > 100000°C
atoms / molecules are fixed in the crystal lattice	atoms / molecules can move freely as a network	atoms / molecules can move freely, large distances	lons and electrons noy bound, very large distances

Plasma Generation


Application relevant generation of plasma in a parallel plate reactor

- Anode grounded
- Cathode connected to RF generator via impedance matching network
- High electric field ionizes gas molecules → Plasma!
- "Fast" electrons follow RF field → positive ions determin plasma potential
- A smaller electrode leads to a higher voltage difference compared to plasma

Plasma Generation

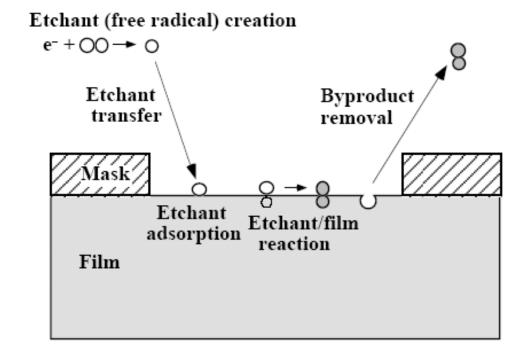
High energy electrons in a plasma lead to further reactions

• Dissociation: Partitioning a molecule into components, e.g. free radicals

• Ionization: Further generation of free electrons and charged molecules

Excitation: excited molecules relax and emit Photons ("glow")

Recombination: Radicals and molecules recombine


- Typically there are about 10¹⁵ cm⁻³ neutral species (1 to 10% of which may be free radicals) and 10⁸-10¹² cm⁻³ ions and electrons
- In standard plasma systems, the plasma density is closely coupled to the ion energy. Increasing the power increases both
- There are three principal mechanisms
 - chemical etching (isotropic, selective)
 - physical etching (anisotropic, less selective)
 - ion-enhanced etching (anisotropic, selective)
- Most applications today try to use the ion-enhanced mechanism (which provides in fact more than the sum of its components).

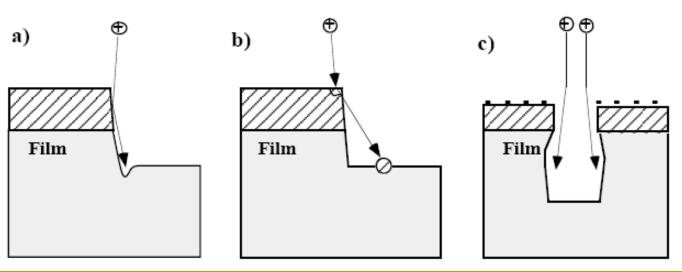
1. Chemical Etching

- Etching by reactive neutral species, such as "free radicals" (e.g. F, CF₃)
- Additives like O₂ can be used which react with CF₃ and reduce CF₃ + F recombination → higher etch rate

Example Chemical Etching:

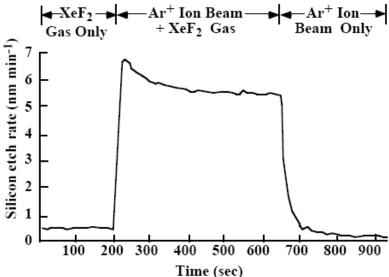
$$e^- + CF_4 \rightarrow CF_3 + F + e^-$$

 $4F + Si \rightarrow SiF_4$



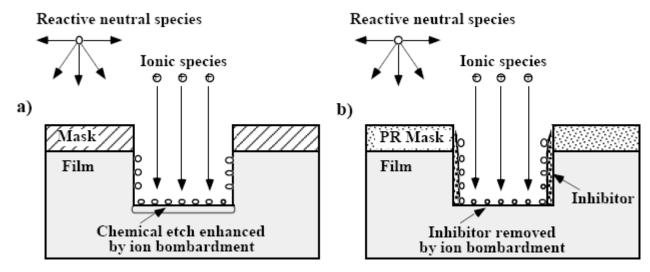
2. Physical Etching or "Sputter Etching"

- Purely physical etching
- Highly directional (ε field across plasma sheath)
- Etches almost anything
- Poor selectivity: all materials sputter at about the same rate
- Pure sputter etching uses Ar+ → Damage to wafer surface and devices can occur:
 - (a) trenching ion
 - (b) bombardment damage, radiation damage, redeposition of photoresist
 - (c) charging

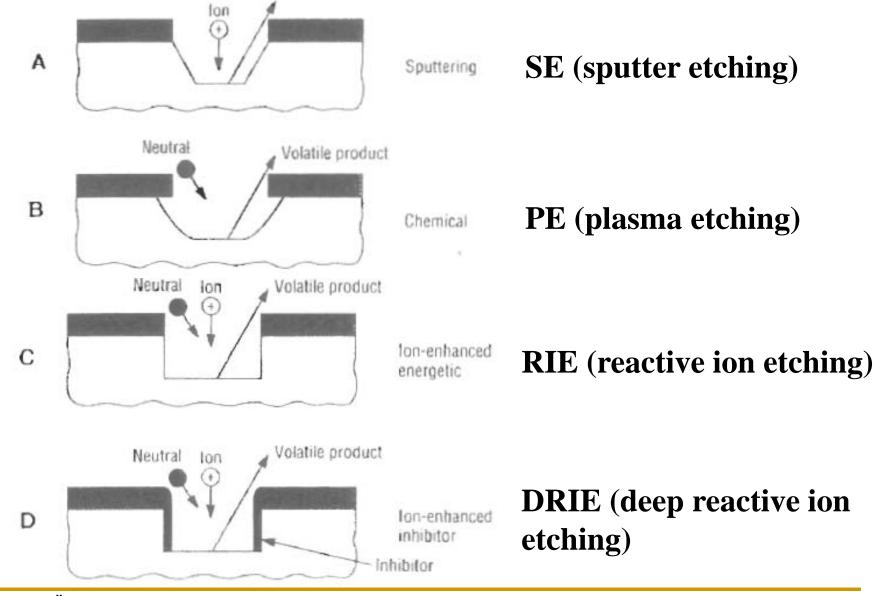

• These damages can occur in any etch system with a dominant physical etching

component

3. Ion Enhanced Etching or Reactive Ion Etching (RIE)


• It has been observed that chemical and physical components of plasma etching do not always act independently - both in terms of net etch rate and in resulting etch profile.

Example:


- Etch rate of silicon as XeF₂ gas (not plasma) and Ar⁺ ions are introduced to silicon surface. Only when both are present does appreciable etching occur
- Etch profiles can be very anisotopic, and selectivity can be good
- Many different mechanisms proposed for this synergistic etching between physical and chemical components. Two mechanisms are shown below:

Ion Enhanced Etching

- Ion bombardment can enhance etch process (such as by damaging the surface to increase reaction, or by removing etch byproducts)
- Ion bombardment can remove inhibitor that is an indirect byproduct of etch process (such as polymer formation from carbon in gas or from photoresist)
- Whatever the exact mechanism (multiple mechanisms may occur at same time):
 - need both components for etching to occur.
 - get anisotropic etching and little undercutting because of directed ion flux.
 - get selectivity due to chemical component and chemical reactions.
 - → many applications in etching today

Summary: Plasma Etching Mechanisms

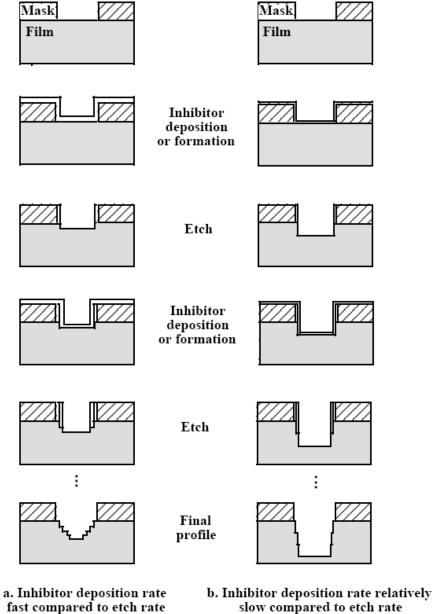
Concept Test 7.1

7.1: A plasma etch process can be described with the following terms:

Etch Rate - Selectivity - Anisotropy - Uniformity

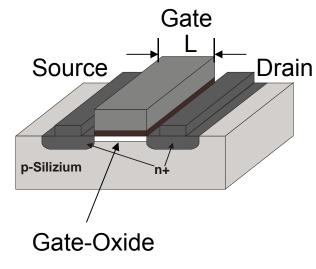
A plasma etch tool has the following process parameters: **Pressure**, **Temperature**, **Gas composition**, **Gas flow**, **Substrate bias**, **RF power**. Which of the following statements are true:

- A. Pressure affects anisotropy and rate.
- B. Temperature affects mainly the ion driven component.
- C. The gas composition affects mainly the etch rate.
- D. Gas flow affects mainly the chemical component.
- E. Substrate bias affects mainly the chemical component.
- F. RF power affects mainly the etch rate.

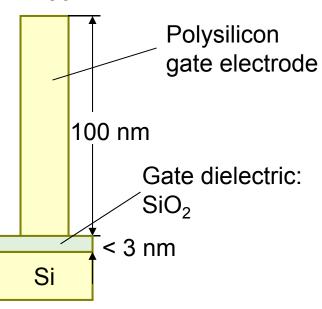

Etching - Overview

- Basic Terminology
- Wet Etching
- Dry / Plasma Etching
 - Mechanisms
 - Example
 - Reactor Designs
- Summary and Appendix

Reactive Ion Etching

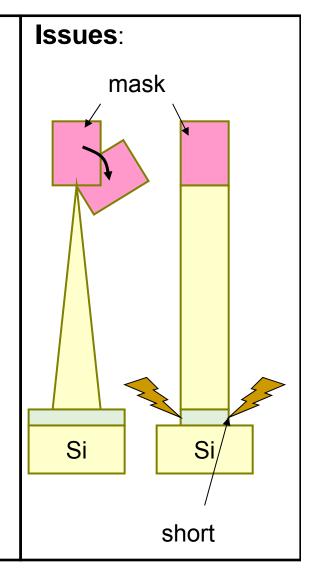

Example:

- RIE can achieve sloped sidewalls without undercutting
- Depends on ratio of inhibitor formation ("deposition") to etching



slow compared to etch rate

Goal: L < 30 nm Gate electrode etch process for silicon MOSFET Gate



Requirements:

- → high anisotropy A
- → high selektivity S
- → 1 minute overetch:

 $r_{SiO2} \ll 3 \text{ nm/min}$

Solution: Gate electrode etch process for silicon MOSFET

HBr + O₂ based plasma process in Oxford RIE Etcher

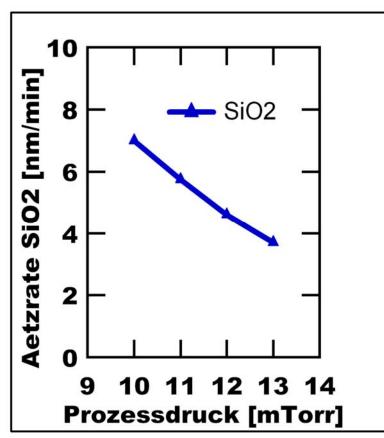
- + Etch product: Si + Br = SiBr (volatile)
- + O₂- addition to increase selektivity
- + Sidewall passivation with SiOBr (anistropy!)
- HBr is corrosive and highly poisonous

Process development: Optimizing process parameters

e.g. Pressure [mTorr]

O₂-Admixture

RF power


Plasma power

Gas flow

Process development: Optimizing process parameters

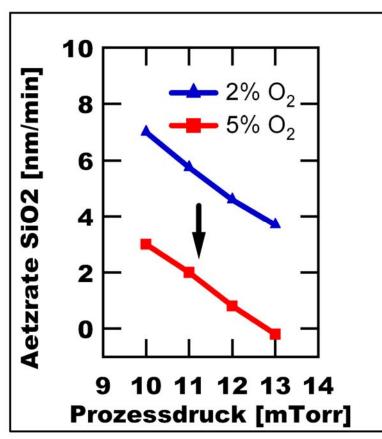
e.g. Variation of chamber pressur [mTorr]

Fixed parameter: gas mixture: 2% O₂ in HBr

Preliminary result:

Rate too high $(r_{SiO2min} = 3.7 \text{ nm/min})$

Further increase of pressure not feasible → loss of anisotropy


New optimization approach:

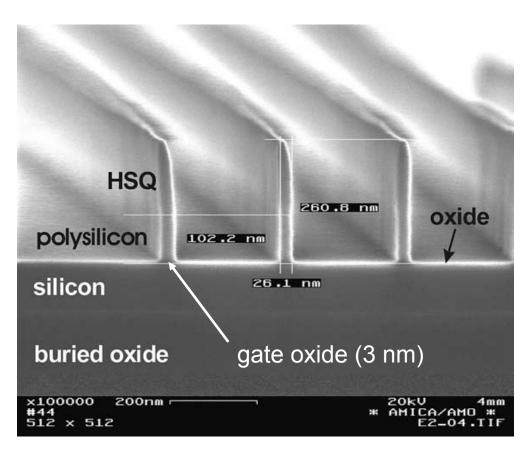
Increase of O₂ admixture

Process development: Optimizing process parameters

e.g. Variation of chamber pressur [mTorr]

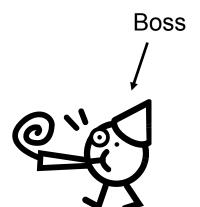
NEW parameter: gas mixture: increase from 2% O₂ in HBr to **5%**

Result:


Rate optimized ($r_{SiO2min} \sim 0 \text{ nm/min}$)

Next steps:

- Check polysilicon etch rate r_{Si}
- Check anisotropy
- If needed: further optimization:
 - RF power
 - Plasma power
 - Gas flow...


RIE Example: Highly Selective Silicon Etch Process

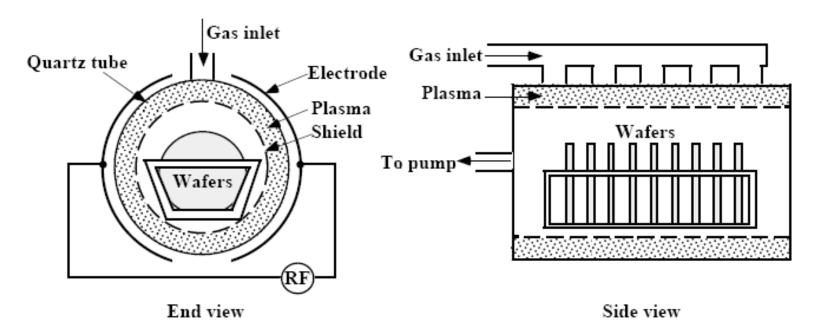
Result: highly selective, anisotropic HBr/O₂ RIE process

Scanning Electron
Microscope (SEM) Image:

- 26 nm Poly-Si Gates
- Etch stop on 3 nm SiO₂

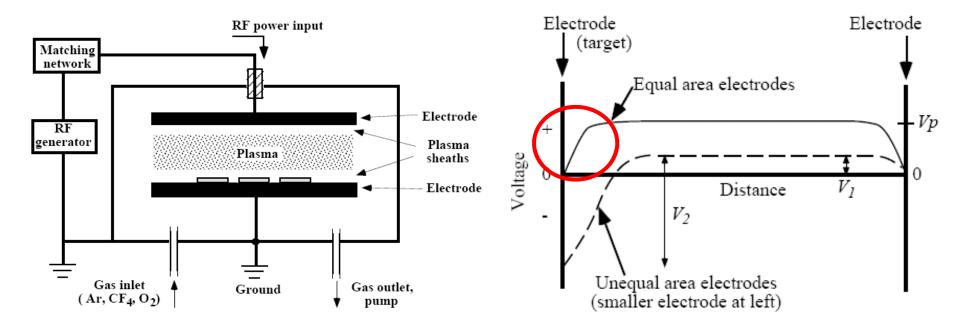
Optimized HBr/O₂ Process fulfils all requirements

Etching - Overview

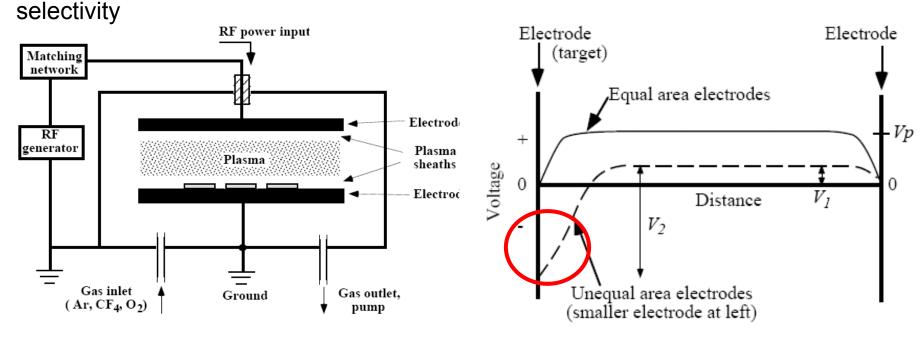

- Basic Terminology
- Wet Etching
- Dry / Plasma Etching
 - Mechanisms
 - Example
 - Reactor Designs
- Summary and Appendix

38

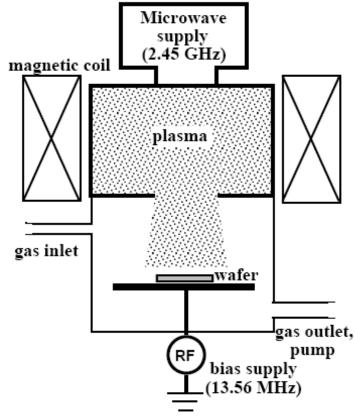
Different configurations have been developed to make use of chemical, physical or ion assisted etching mechanisms.

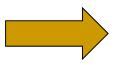

Barrel Etchers

- Purely chemical etching
- Used for non-critical steps, such as photoresist removal ("ashing")


Parallel Plate Systems - Plasma Mode

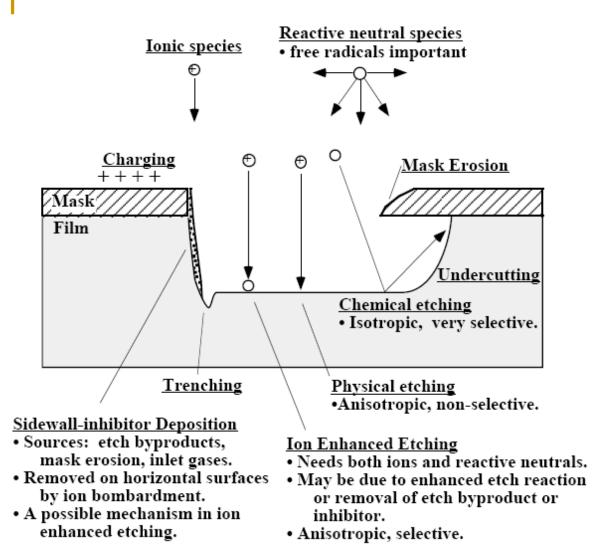
- Electrodes have equal areas (or wafer electrode is grounded with chamber and larger)
- Only moderate sheath voltage (10-100 eV), so only moderate ionic component
- Strong chemical component
- Etching can be fairly isotropic and selective

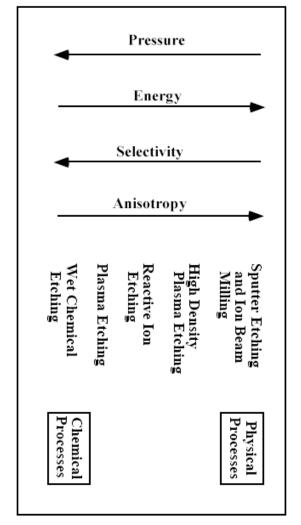

Parallel Plate Systems - Reactive Ion Etching (RIE) Mode


- For more directed etching, need stronger ion bombardment
- Wafers sit on smaller electrode (RF power there)
- Higher voltage drop across sheath at wafers.(100-700 eV)
- Lower pressures are used to attain even more directional etching (10-100 mtorr)
- More physical component than plasma mode for more directionality but less

High Density Plasma (HDP) Etch Systems

- Uses remote, non-capacitively coupled plasma source (Electron cyclotron resonance ECR, or inductively coupled plasma source ICP)
- Uses separate RF source as wafer bias. This separates the plasma power (density) from the wafer bias (ion accelerating field)
- Very high density plasmas (10¹¹-10¹² ion cm⁻³) can be achieved (faster etching)
- Lower pressures (1-10 mtorr range) can be utilized due to higher ionization efficiency (→ longer mean free path and → more anisotropic etching)
- These systems produce high etch rates, decent selectivity, and good directionality, while keeping ion energy and damage low

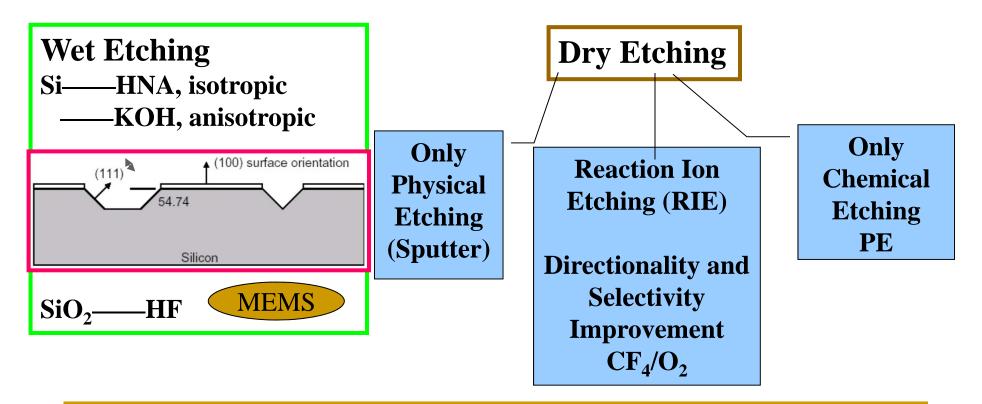



Widely used today!

Etching - Overview

- Basic Terminology
- Wet Etching
- Dry / Plasma Etching
 - Mechanisms
 - Example
 - Reactor Designs
- Summary and Appendix

Summary: Plasma Etching


Summary: Etching

What's pattern transfer?

Lithography + Etching

Tow critical issues?

Selectivity
$$S = \frac{r_1}{r_2}$$
 Directionality $A = 1 - \frac{r_{lat}}{r_{vert}}$

Summary of Key Ideas

- Etching of thin films is a key technology in modern IC manufacturing.
- Photoresist is generally used as a mask, but sometimes other thin films also act as masks.
- Selectivity and directionality (anisotropy) are the two most important issues. Usually good selectivity and vertical profiles (highly anisotropic) are desirable.
- Other related issues include mask erosion, etch bias (undercutting), etch uniformity, residue removal and damage to underlying structures.
- Dry etching is used almost exclusively today because of the control, flexibility, reproducibility and anisotropy that it provides.
- Reactive neutral species (e.g. free radicals) and ionic species play roles in etching.
- Generally neutral species produce isotropic etching and ionic species produce anisotropic etching.
- Physical mechanisms:
 - Chemical etching involving the neutral species.
 - Physical etching involving the ionic species.
 - Ion-enhanced etching involving both species acting synergistically.

Mask **Appendix: Improving Etching Directionality DRIE** Film **✓** Increase ion bombardment (physical Inhibitor deposition component) or formation **✓** Increase sidewall inhibitor Etch SURFACE DAMAGE INDUCED SURFACE INHIBITOR MECHANISM OF ANISOTROPY ANISOTROPY Inhibitor deposition or formation Etch Final (e) ETCHANT (·) SUBSTRATE ATOM profile

Appendix: Plasma Etching in Silicon Technology

Common etchants used for various films in silicon technology.

Material	Etchant	Comments
Polysilicon	SF ₆ , CF ₄	Isotropic or near isotropic (significant undercutting); poor or no selectivity over SiO ₂
	CF ₄ /H ₂ , CHF ₃	Very anisotropic, non-selective over SiO ₂
	CF_4/O_2	Isotropic, more selective over SiO ₂
	HBr, Cl ₂ , Cl ₂ /HBr/O ₂	Very anisotropic, most selective over SiO ₂
Single crystal Si	same etchants as polysilicon	
SiO ₂	SF ₆ , NF ₃ , CF ₄ /O ₂ , CF ₄	Can be near isotropic (significant undercutting); anisotropy can be improved with higher ion energy and lower pressure;
		poor or no selectivity over Si
	CF_4/H_2 , CHF_3/O_2 , C_2F_6 , C_3F_8	Very anisotropic, selective over Si
	CHF ₃ /C ₄ F ₈ /CO	Anisotropic, selective over $\mathrm{Si_3N_4}$
$\mathbf{Si}_{3}\mathbf{N}_{4}$	$\mathbf{CF_4/O_2}$	Isotropic, selective over SiO ₂ but not over Si
	$\mathrm{CF_4/H_2}$	Very anisotropic, selective over Si but not over SiO ₂
	CHF ₃ /O ₂ , CH ₂ F ₂	Very anisotropic, selective over Si and ${ m SiO_2}$
Al	Cl ₂	Near isotropic (significant undercutting)
	Cl ₂ /CHCl ₃ , Cl ₂ /N ₂	Very anisotropic;
		BCl ₃ often added to scavenge oxygen.
W	CF ₄ , SF ₆	High etch rate, non-selective over SiO ₂
	Cl ₂	Selective over SiO ₂
Ti	Cl ₂ , Cl ₂ /CHCl ₃ , CF ₄	
TiN	Cl ₂ , Cl ₂ /CHCl ₃ , CF ₄	
TiSi ₂	Cl ₂ , Cl ₂ /CHCl ₃ , CF ₄ /O ₂	
Photoresist	O ₂	Very selective over other films