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First example: Response of electron gas

— Changing the speed of light

— Dispersion

Polarization of atoms and molecules (brief)
— Response of crystals

Medium of forced oscillators
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» Hermitian / antihermitian parts of the dielectric tensor
» Application of the Plemej formula

Dielectric response for plasmas

— Magnetoionic theory (anisotropic/gyrotropic)
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What do we mean by dielectric response?

 When an electromagnetic wave passes through a media,
e.g. air, water, copper, a crystal or a plasma, then:
— The electromagnetic fields exert a force on the particles of the media

— The force may then “pull” the particles to induce
» charge separation p ==) drive E-field in Poisson’s equation

V ° Emedia = pmedia /80

— E-field is coupled to the B-field through Maxwells equations
« currents J ==) drive E- & B-fields through Ampere’s law

1 JE
V X Bmedia = AuOJmedia + C2

media

ot
— The fields induced by the media is called the dielectric response
— The total fields are:

E=FE +E See previous lecture for
external media representation in terms of:
B = Bexternal + B

Polarization P
Magnetization M

media
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Equations for calculating the dielectric response

E- & B-field exerts force on particles in media

mv =qg(E+vxB) solve for v !

The induced motion of charge particles form a current
and a charge density

0
= E nv — . +Vo]J =0
Jmedza q a f pmedla media

species

(n=particle density)

Current and charge drive the dielectric response

V * Emedia = pmedia /80

1 oE .
V X B _ media — MQJmedia

media C 2 a ¢

The respons can be quantified in e.g. the conductivity o

Ji(k,w) =0,(K.0)E (k,w)
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Response of electron gas to oscillating E-field

« The response of a media is driven by the electric and magnetic
forces on the particles in the media

Use Newton’s equations, or guantum mechanics, to describe how
the charged particles moves and thus the response of the medium

« Example: Consider electron response to electric field oscillations
(e.g. high frequency, long wave length waves in a plasma)

— Align x-axis with the electric field: E(7) =e E (1)
— Electron equation of motion:

mi(t) = qE (1) =  x(@)=-—1

ma

— The current driven in the medium (let n be the electron density)

J(O)=qni(t) = J(0)-= 4n g (@)

mao

— Thus we have derived the conductivity of this media |o(w) =i——

— Note: o(w), i.e. the media is dispersive!

13-02-05 Dispersive Media, Lecture 4 - Thomas Johnson 5



Response of electron gas to oscillating E-field (2)

« This media is isotropic (the same response in all directions)
— Proof 1: rotate E-field to align with y-axis or z-axis and repeat calculation

— Proof 2: use argument that the medium have no “intrinsic direction” (like a static
the magnetic field or the structure of a crystal), thus the media have to be

isotropic
— Being an isotropic media the components of the conductivity tensor are:
2 2
n @
0, (0) = o(W)d, =i -8, =ig,—5,
ma 0)) nqz
where w), is known as the plasma frequency w; =—
E,m
« Relations to: i io(w) wp2
— susceptibility: Xy(w) = —G (0)) = 51;,- =T 2 517
€, €, 0,

[] [] — ’ — 2
— polarisation response: @ (®w) =iw0 (W) = —€,w 70,

W
— dielectric tensor: K, (o) = 5,-]- + (@) =[1- _g 6,.j
W
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Application of response

 How does the electron response affect the propagation of waves?
— Consider: high frequency, long wave length waves in a plasma
« then response tensor from previous page is valid (more details later)
« Split currents into antenna current J . and the current induced in

ant
the media J, ;.. Then Amperes and Faradays equations give:

edia-
2

Note: total field E driven

)]
KkxkxE+—E+inoJ . =-in0J
C2 “’0 media MO ant by both Jmedia and Jam

2

1))
» Use the conductivity o=i50;” of the media:

2 2 o) 2
(63 (63 (63

[ ] (] p

2 E + ZMO(DJmedia =" E + l“omOE =" 1 - 2

C C C (6))

E

(1)2
= kxkxE+—E=-innl,_,

C,, 2\l
" N N . a)
i.e. a wave equation with speed of light:  |c, = c2(1 - —’;)
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Polarization of atoms and molecules

* The polarization of an atom; (require quantum mechanics)

— The electric field pushes the electrons, Electric field
inducing a charge separation; <

— Quantum mechanically: perturbs the
eigenfunctions (orbitals): Y@ = 1pO+yp O

(1) (0) (D ey
wq = E aqq'IPq' — ]media & pmedia

— The field induced by the media is opposite
to the total field

Electric field
« The polarization of a water molecule < -
— Water molecules, dipole moment d %,
— The electric field induce a torque w@
that turns it to reduce the total field
— Note: the electron eigenfunction in molecule @

are also perturbed, like in the atom
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Uniaxial crystals

In solids the response, or electron mobility,
IS determined by the

— Metals: the valence electron give rapid response

— Insulators: electrons orbitals are bound to
a single atom or molecule

Uniaxial crystals: have an optical axis;
e.g. the normal 71 to a sheeth structure —_—

Stronger bonds within then between the sheeths
— Graphite: valence electrons are shared only within a sheeth
— electron mobility (response) is different within and perpendicular to the sheeths
— The crystal is anisotropic

Let the normal to the crystal be in the z-direction (as in figure)

Crystal structure of graphite

-Ol 0 0 Graphite
[0..]: 0 o O 0,=25-50x10"°
i
0 0 o 0, =3x10"

Example: slight birefrigence in optical fibres can cause modal dispersion
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Biaxial crystals

« Uniaxial crystals has symmetric plane,
In which the electron mobility is constant

« Biaxial crystals have symmetry plane
— Instead they have different conductlwty in

all three directions o, 0 O
Biaxial crystal called
[Gij] =10 Og 0 Borax, Na,(B,05)(OH), 8(H,0)
0O O O,

— When expressed in terms of the dlelectrlc tensor one may introduce
three refractive indexes of the media

) 0 0
=l 0 (m)* O
0 0 (ny)z_

l

%, - [a r o,

e,

Epsom Salt (MgSO,):

n.=[1.433, 1.455, 1.461 ] These medias are rarely strongly unisotropic
i T
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Reminder: Equations for calculating the dielectric response

E- & B-field exerts force on particles in media

mv =qg(E+vxB) solve for v !

The induced motion of charge particles form a current
and a charge density

0
= E nv — . +Vo]J =0
Jmedza q a f pmedla media

species

(n=particle density)

Current and charge drive the dielectric response

V * Emedia = pmedia /80

1 oE .
V X B _ media — MQJmedia

media C 2 a ¢

The respons can be quantified in e.g. the conductivity o

Ji(k,w) =0,(K.0)E (k,w)
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Medium of forced oscillators

Consider a medium consisting of charged particles with
— charge g , mass m , density n
Let the particles position x follow the equation of a forced oscillator

— i.e. the media has an eigenfrequency Q and a damping rate T’

« damping could be due to collisions (resistivity) and the eigenfrequency
could be due to magnetization an acustic eigenfrequency of a crystal

q/m

#(0) + T(6) + Q2x(1) = LE (1) = x(w) = E (o)
m

Q' —w’ -ilTw
The current is then

iong” /m
Q* —w’ -ilw
Thus the dielectric tensor reads

J(w) = gn|-iwx(w)] = - E (w) =0E ()

l W’ ng’
=0,+——0, =|1+ —5—5——=—10, , where @, =——
£, Q -w -il'w E,M

K,

]

— again w, is the plasma frequency
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Medium of forced oscillators (2)

Isotropic dielectric tensors K; can be replaced by a scalar X,
consider e.g. the inner product K,E, =K0,E . =KE,

For the medium of harmonic oscillators
2

0,
K=1+——"7F—
Q —w —-ilTw

In the high frequency limit where w >> & and w >>I", then
2

00)
K=1-—45+..
0]
— this is the response of the electron gas!
At low frequency w << 2 and 2 ~1", then

2

00
K=1+Q—Z

— here the medium is no longer dispersive (independent of w)
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Medium of forced oscillators (3)

« The medium is the most dispersive when the frequency is near the
characteristic frequency of the medium w ~ Q2

— first rewrite the denominator
D=Q* —w’ -ilTw =

=Q° —(w+il/2)" =T /4
=(Q-w-il/2)(Q+w+il/2)-T"/4

— assume here the damping rate to be small w >> I' such that the last
last term is negligible

— Next use the relation: 1 — 1( I — 1 )
(a-b)(a+b) 2b\a-b a+b

— The dielectric constant is then

2
w

K=1- . ——
w+il'/2 - Q)(w +il/2 + Q)

TN

=1—

1 1
w+mu-g_w+wm+gl

D
®
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Medium of forced oscillators (4)

* Next we shall use the condition that we are close to resonance; i.e.
the frequency is near the characteristic frequency w ~ £

1 1
|a)—£2|<<|a)+£2| = ‘ . ‘>> .
w—Q+1I'/2 w+Q+iI'/2
* The dielectric constant then reads
‘o W’ 1 | ®, (w-Q-il/2)
2Q (w -Q+il/2) ~ 2Q [(w _Q) 4T /4]
w’ Q
KH = ?ﬁ{K} I W~ Hermitian: wave propagation
2Q2 [(a) _ 9)2 + T2 /4] (reactive response)
2
K4 = 3{ K} — @y I Antihermitian: wave absorption
Q [(a) _ 9)2 + T2 /4] (resistive response)
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Medium of forced oscillators (5)

* Antihermitian part comes from iI'/2 in 4

K=1

— Thus, the dissipation occur mainly
where [[]>|ow - Q|

Summary:

00,

2
14

2Q (0 -Q+il/2) 4 e

3 LE

— which is most important if [['/2| ~ | — Q| 2/;:\ E
\

(for |F/2| << |a) - Q| then K4 << K*) ¥

!

- = =Im(K)

Re(K)

— Low frequency: not dispersive

— Resonant region: strong damping in thin layer [[} >|w - Q)
— High frequency: response decay with frequency, x ~K -1~ "~

like an electron gas.

2
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Medium of forced oscillators (6)

What happens in the limit when the damping I" goes to zero?
Again assume w ~ Q then
2
00 1
K=1-—£ :
2Q (0 —Q+il'/2)

The limit where T" goes to zero can be rewritten using the Plemej formula

2 2
lisz lim 1 wp 1 )=1_wp 1
I'—=0 I'—=0

2Q (0 - Q+il'/2) 2Q (0 - Q+i0)

2

w’ 1
_1_291%_9_1@(@_9)]

Thus when the damping goes to zero there is still an imaginary part that
will cause wave damping!
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Dielectric response for plasmas

Plasma ~ ionized gas
— a plasma is a collection of ions and electrons
— Charge neutrality: highly conducting; insteady state charge density is zero

— plasmas tend to follow classical mechanics (not quantum mechanics),
i.e. Newton/Einsteins equations of motion combined with Maxwell’s equations

First example is the Magnetoionic theory:
— Assume: ions are static; unperturbed by the wave field (no response)

— Assume: electrons are cold; they are initially static, but move in the presence
of the wave field

— the plasma has a static magnetic field; align the coordinate system: B, = B,
— align also y-axis with the k vector: K =k e +k.e,
— the respons of the electrons is then given by Newtons equation

v=L(E+vxB)
m

— Next: add a friction with the ions (a force —mv;v) and use v =r

i = L(E+FxB)-v,i
m
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Dielectric response for plasmas (2)

« Note that the magnetic field has two components a wave component and a
static component

B-B__+B,

wave

— Thus the Lorentz force is non-linear:  mr x (Bwave +BO)
« Assuming that the wave amplitude is small, then we can neglect B, .

I'-rxe, iB +vfr—1E

“m m
— here we can identify the cyclotron frequency Q=¢B,/m

e Fourier transform: —w’r + ior x e Q- i(ovf 9 —E
m

. : q o o —
—°F; + IO, 7,05, L2 — IOV .7, = EEi Note: e_=e; =6, ¢,

[(u)+ivf)6 zle3Q]r ——%

Matrix in the indexes i, j
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Dielectric response for plasmas (3)

« Write equation as a matrix equations:

][”J] =

[(oo +iv, )6ij —ig ;52

Inverting the matrix

The current is then

j=ng(-ior) = -ig 0’

h " M, M,

hH1= M, M,
mao

r | 0

M,
M,
0

|

1

W +1V,
192
0

o oy

M,
M,,
0

—1Q2
oo+ivf
0
M11=
1M, =
M33_
) “El-
0 ||E,
M33__E3_

0
0

(1)+l\’f

h q E,
n|l=—"IFk,
mao
|73 ] _E3_

W +1v,
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Dielectric response for plasmas (4)

« The dielectric tensor in the magnetoionic theory then reads:

2

S—l—wp W +iv,
'S D O W (w+iv,) -Q°
i , W, Q
[Klj]= (Sij+80—w()'ij = 1D S 0 D=_a) (a)+ivf)2—§22
O 0 P :
i 1 )
P=1-——"
i w(w +1V )
or
K, =S(8, ~bb,)+ Pbb, ~iDe,b,

where b, are the components of the unit vector parallel to the magnetic field

* This dielectric response tensor is:
— Anisotropic; response is different for E in the x, y, or z direciton.

— Gyrotropic: the off-diagonal terms (involving D) are perpendicular to a
characteristic direction of the media
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Hermitian part of the dielectric tensor

1 1 s =D 0] [ S (DY o
KH=5(K+KT*)=5 iD S O0|+|GD) S 0
0o 0 P| | O 0 P
(' . 7 %
S —-iD 0 S (D). 0]
111, . *<)\- Transpose make
=5[|iL S O|+|(=iD) 0 ||=" _ip*and ip"
0O 0 P 0 0 P change place
1/'5 D 0] [ s -iD) 0
=5 iD S O0l|+|iD) S 0||=
0o 0 P||O 0 P
1 - S+ST  -iD+D) 0 éﬁ{s} -R{D} 0
- i(D+D)  S+§ 0 |=|D} RS} o0
0 0 P+P"| | 0 0 NP}
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Antihermitian part of the dielectric tensor

K" = %(K -K"") =

/_

*

S —-ib 0] [ S (-iD)y o0
iD S 0f|-|GD)y S 0] |=
0 0 P| | O 0 P

1
2

' S;{S} -i3{p} 0
-i|i3{p} I{s} o0
0 0 P}
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Cold plasma dielectric response

A commonly used representation of the plasma is the cold plasma

— Here ions and electrons are in a stationary equilibrium, and move only
in the presence of a wave field

— Usually the friction between ions and electrons are neglected
— Each species is then described by the
« charge g"
* mass m"
« position rv (or velocity v¥)
— where v =i represent the ions and v =e represent the electrons
« NOTE: v is not a tensor index!

* The linearlised equation of motion for species v (B,=B,e.) :
mi -q1° xB,=q'E
P -1 xe Q' =-LE

A%

m

— Where "=q" B,/ m"
— this equation is solved like in the magnetoionic theory
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Cold plasma dielectric response (2)

* The solution of the equation of motion for species v is

i % ] i 1%

h 7 M, M,
v 1%

no|=—-|My My
" m o

2 0 0

v

v

MY =M =—2
- - 1 T Mpn T 2
0 E, w -
y y Q"
0 Ez 1 M, =-M, = o’ _sz
M33V_ _E3_ L1
M33 -
w

 With many species the current is a sum over the all species:

Mllv MIZV O El
J= Ejv = Enqu(—ia)rv) = E —ig,w,, |M," M, 0 ||E,
v v v O O M33V _E3 |
thus also the conductivity -M“V M, 0
o . 2 v %
iS @ sum over species: 0= E —1E,w,, | My My, 0
Y 0 0 M,
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Cold plasma dielectric response (3)

* The dielectric tensor for the cold plasma reads

|

(1)2
_ _ S=1-y—"—
) S —ZD O v @ _QV
K |=l8,+—o0, |=|liD s 0 0, @
ij]_ ij+ sz = |1 B D=_E pv _
goa) 0 (DZ —QV
0o 0 P v
(0))
. P=1-y—k
Low frequency limit w << ¥, w,, . v
2 2
S=...=1+ sz C2
V,” 'V, «— Alfven velocity
D=..=0
- S areive i c/v: o0 0
— I.e. non-dispersive in S'! A
2 2
Low frequency tensor: [K,-j] =| 0 c™/V, 0
— compare: uniaxial crystal 0 0 1- Emiv /o’
— describes Alfven wave and v /

plasma oscillations (see next lecture)
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Cold plasma dielectric response (4)

* High frequency limit w >> ¥, w,,

2
a)V
S=1—Ew”2 . ( ,

0

[~ Kzl— A4

2 :: 2
¥ v ~ W

0, +O0(w™)

w: <2 )
D=—E 203 ~O(w™)

Like an electron gas!
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Response of a warm plasma

In a warm plasma (like in a gas) the particles move with
an unordered thermal motion;

— the velocity can be considered random (as in statistical mechanics)
The vector space of velocity vectors v=(v; v, v;) is call velocity space

Definition:
The distribution function f{v) such that f(v)dv,dv,dv, is the probability
of finding a particle with velocities in

(v, , vitdv)) X (v, v+dvy) X (vs, vitdvs).

Relation to the density » and the average fluid velocity <v> by :
n= [ fomav
n(v) = fvf(v)d3v

Thus, for an ensamble of species v (e.g. ion and electron)

Y=YV =>q [vfmd
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Response of a warm plasma

In absence of a wave field, assume the velocities of the particles of

species v are distributed in a Maxwellian distribution function with
temperature 7'V and density n”

v 2
) = exp| ——
f ( ) ( /27rmVVV)3 p 2VV2
— where Vv is the thermal velocity; TV=mY( VV)?/2

« When subject to a wave field, the equation of motion reads
m'v,(t,r,v) = qV[EZ. + el.jkvak]

The distribution then evolves according to the Viasov equation
(continuity equation in real and velocity space)

0 0 0
1 —+v,—+v,(t,r,v)— f (t,r,v) =0
BtV }f( )

] Vi

ra s q
<5+V axi+m [E(tr)+a,]ka(tl')] }f (z,r,v) =0

Note that the wave field perturbs both E, B and f, thus this equations
IS non-linear in the perturbation!
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Response of a warm plasma (2)

Separate unperturbed and perturbed quantities
Frv) = W)+ )

E(t,r,v) =0+E'(t,r,v)

B(7,r,v) =0+ B'(¢,r,v)

J\

Use Faraday’s law to write: B' =k xE'/w

Jd Jd qV Iv
{é’t+v dx.+m [E +E,V, ] }f (trv)——

1

V

a v
o [Ei1+€ijkvakl]EfM (V)

Non-linear terms
Linearlised equations

0 d Iv qv k 1] 0 Iy
-t V tarav = - E + €., € = E _ v Vv
{at axi }f ( ) m l ijk knm J m avi f ( )
v —i v k oy V k a )
Fourier transform f" (w,k,v) = qv [(1_ ) L z]Eml M0

Resonance wh'en particles travel
at phase velocity of the wave!
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L andau-resonance

The resonance in the solution to the linearised Vlasov equation is related

to a damping [

flv (a),k,v) = Particle Acceleration
—kev =

— This was first realised by Landau

What is the physics of this resonance?
— Consider a plane wave E ~exp(ik ® x —iwt)
— Let a particle travel with the constant velocity x = vr
E ~exp(ike vt —iwt) = exp(i[k °V-— a)]t) =exp(—-iw't)

— Thus, the particles will see a field oscillating with the frequency w’
« o’is the Doppler shifted velocity!

— The resonance condition w —k*v=0,
 i.e. the Doppler shifted frequency is zero

* i.e. when the travel with the same speed as the wave
 |.e. the E-field will accelerate the particle forever — the wave is damped!
— Note: we have linearised the equations, thus we assume that change in
particle velocity is small no matter now long the acceleration time!

* in reality non-linear effects come in and then the damping remains only if the
dissipation (I") is more important than non-linearity

Qy
83 o

Wave Propagation
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Response of a warm plasma (3)

« The current is now obtained from the integral over velocity space

: v v ; Add a weak dissipation to
Jn(@,K) = Eq f vl (@ kv)dy = allow for use of Plemej formula

: 2 v,k V.Vi smv 3 1
=1—1€, ) W 0,, + ot — v)d'v E
{ 102 Py f o w-Kkev+i0 nVVVf ) } "
|

J

The conduc"[ivity tensor!
« After some algebra it is possible to rewrite the dielectric tensor as

o(z)

K. =K'xx, +KL(6U. —KiKi) d
, 21 . The plasma
W dispersion function
L pv . 2 p
K =1+E v [1—(1)(yv)+n/ﬂ:yV exp(—y, )]
o\ kv
1
2 s
KT 1 U)pv ',\/7 2 4.’,/
=1+ q)(yv) —1 nyv eXp(_yv ) /
v W 0 & + i e
S IR Fig. 10.1 The real It( lid 2) d tt X
_ v _ -z - ig. 10. e real part (solid curv the imagina
yv =W //\/Ekv ’ (I)(Z) - 2Z€ fO e dt %dotted curve) ofpt.he plasma disf)e:qlilon t”l:nlé:.i?)%ll?;%‘j’?g?.rt
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Damping in warm plasma

« Consider longitudinal waves
— the damping is then proportional to (see later lectures for details)

wpv ’ 2
2( kvv) Vmy, exp(-y,?)

v

* This function has a maximum when y ~0.7 , or w/k~V, , i.e. when the
phase velocity of the wave is roughly equal to the thermal velocity

— this the when the Landau resonance is most effective

¢(z) A

2 1

0

— " e — 'b‘ Z

1 2 3

Fig. 10.1 The real part (solid curve) and the imaginary part
(dotted curve) of the plasma dispersion function (10.27).
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