EL2450 Hybrid and Embedded Control

Lecture 7: Real-time scheduling

- Scheduling periodic and aperiodic tasks
- Schedulability analysis

Today's Goal

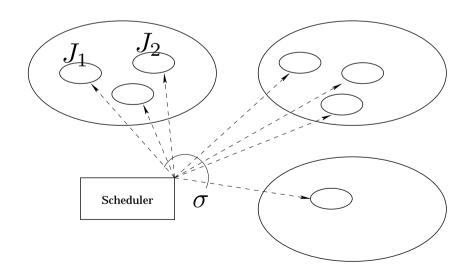
You should be able to model and analyze

- scheduling problems
- earliest deadline first scheduling
- rate monotonic scheduling
- deadline monotonic scheduling
- polling server

Scheduling

For a set of tasks $J = \{J_1, \dots, J_n\}$, a **schedule** is a map $\sigma : \mathbb{R}^+ \mapsto \{0, 1, \dots, n\}$ assigning a task at each time instant t:

$$\sigma(t) = \begin{cases} k \neq 0, & \text{CPU should execute } J_k \\ 0, & \text{CPU is idle} \end{cases}$$



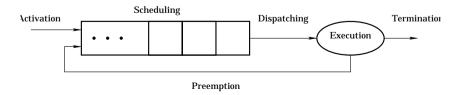
- \bullet σ is **feasible** if J can be completed according to specified constraints
- J is **schedulable** if there exists a feasible σ

Scheduling Algorithms

A **scheduling algorithm** sets task execution order (defines σ)

A scheduling algorithm is

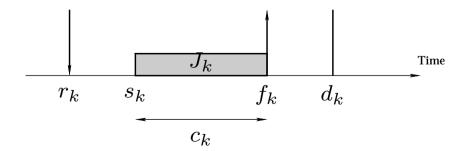
- **preemptive** if the running task can be arbitrarily suspended at any time (otherwise **non-preemptive**)
- **static** if scheduling decisions are based on fixed parameters assigned prior to activation (otherwise **dynamic**)
- **off-line** if σ is generated off-line and stored in a table (otherwise **on-line**)



Timing Constraints

A task J_k can be characterized by the following parameters:

- Release time r_k is the time at which J_k becomes ready for execution
- ullet Computation time c_k is the time necessary for the CPU to execute J_k
- ullet Deadline d_k is the time before which J_k should be completed
- Start time s_k is the (actual) time at which J_k starts executing
- Finishing time f_k is the (actual) time at which J_k finishes executing



6

Independent Periodic Tasks

We mainly focus on scheduling independent periodic tasks.

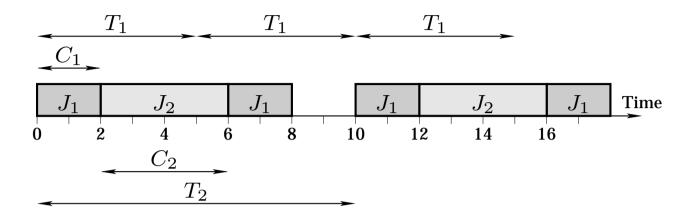
Tasks are

- **independent** if there are no precedence relations and no resource constraints
- **periodic** if they are activated at a constant rate

Independent Periodic Tasks

Suppose all tasks J_k are independent and periodic with

- Period T_k
- ullet Worst-case computation time C_k
- Relative deadline D_k (deadline relative to current release time; often $D_k \equiv T_k$)
- Worst-case response time R_k (largest time between release and termination)
- Phase ϕ_k (release time of the first task instance)



9

Schedule Length and Feasibility

For independent and periodic tasks J, the length of a schedule σ is equal to

$$lcm(T_1,\ldots,T_n)$$

 σ is feasible if all deadlines are met, i.e.,

$$R_k \le D_k, \quad \forall J_k \in J$$

Utilization Factor

The **utilization factor** U of a periodic task set J is the fraction of processor time spent in the execution of the task set. Since C_i/T_i is the fraction for J_i , we have

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

- ullet If U>1, then the task set J is not schedulable
- ullet Even if $U \leq 1$, it might be hard to find a feasible schedule
- ullet U is independent of the scheduling algorithm

Scheduling Problem

The scheduling problem of finding a feasible σ for a set of independent periodic tasks $J=\{J_1,\ldots,J_n\}$ can be formulated as

Find
$$\sigma$$
 such that $R_k \leq D_k$
$$U \leq 1$$

We will consider the following potential solutions

- Earliest deadline first scheduling
- Rate monotonic scheduling
- Deadline monotonic scheduling

Earliest Deadline First Scheduling

Earliest deadline first (EDF) scheduling algorithm assigns **dynamic priorities** to the tasks based on their absolute deadlines:

13

Execute task with shortest time to deadline d_k

- Priorities are set dynamically
- Works also for aperiodic tasks

EDF Schedulability

A set of periodic tasks $J = \{J_1, \ldots, J_n\}$ with $D_k = T_k$, $k = 1, \ldots, n$, is schedulable with EDF if and only if

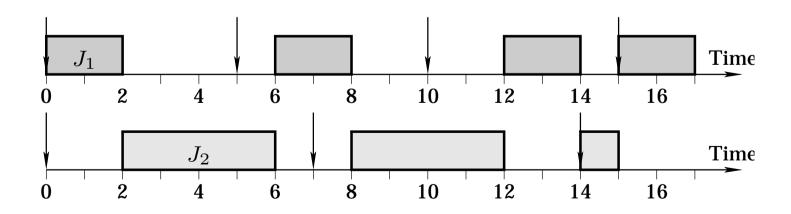
- Processor can be fully utilized with EDF
- A similar result holds even if $D_k \neq T_k$: if J can be scheduled by any algorithm, then EDF can schedule J.

Example: EDF Scheduling

$$J_1$$
 has $T_1 = D_1 = 5$, $C_1 = 2$

$$J_2$$
 has $T_2 = D_2 = 7$, $C_2 = 4$

Since $U=\frac{2}{5}+\frac{4}{7}=0.97\leq 1$, the tasks are schedulable with EDF.



Rate Monotonic Scheduling

Rate monotonic (RM) scheduling algorithm assigns **fixed priorities** to tasks, such that $T_i < T_j$ implies that J_i gets higher priority than J_j .

- Provides a way to set fixed priorities for a set of tasks
- Fixed priorities might otherwise often be set heuristically

RM Schedulability

A set of periodic tasks $J = \{J_1, \dots, J_n\}$ is schedulable with RM if

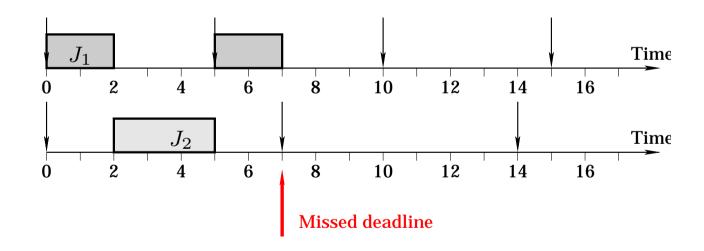
$$U \le n(2^{1/n} - 1)$$

- ullet Not a necessary condition, so there might exist an RM schedule even if U does not fulfill the inequality
- $n(2^{1/n}-1) \to \ln 2 \approx 0.69$, as $n \to \infty$, so RM can always schedule J if the total process utilization is less than 0.69
- A maximum utilization of 0.69 is often used as a rule of thumb for RM

Example: RM Scheduling

Try to schedule the previous example with RM. Since $T_1 < T_2$, RM gives higher priority to J_1 than J_2 .

RM does not give a feasible schedule!



Note that
$$U=0.97>2(2^{1/2}-1)\approx 0.83$$

RM is Optimal

If a set of periodic tasks are not schedulable by RM, then the set is not schedulable by any other **fixed priority** scheduling algorithm.

- RM is in this sense the best fixed priority algorithm
- RM is not good when $D_i \ll T_i$ (rare but urgent tasks)

Deadline Monotonic Scheduling

Deadline monotonic (DM) scheduling algorithm assigns **fixed priorities** to tasks, such that $D_i < D_j$ implies that J_i gets higher priority than J_j .

- At any instant, the task with shortest relative deadline is executed
- Fixed priority schedule since relative deadlines are constant
- For tasks with deadlines less than periods

- Works for rare but urgent tasks
- DM=RM if $D_i \equiv T_i$

Worst-Case Response Time Calculation

Suppose the tasks J_1, \ldots, J_i are ordered by decreasing fixed priority. Worst-case response time R_i for J_i is the largest time between release and termination. It can be derived as the smallest positive solution to

$$R_i = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

- ullet R_i appears on both sides of the equation
- $\sum_{j=1}^{i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$ represents the preemption by higher-priority tasks

Example

Consider tasks (from previous examples):

 J_1 has $T_1 = 5$, $C_1 = 2$, high priority

 J_2 has $T_2=7$, $C_2=4$, low priority

Worst-case response times are then $R_1=2$ and $R_2=8$, because:

$$R_1 = C_1 = 2,$$
 $R_2 = C_2 + \left\lceil \frac{R_2}{T_1} \right\rceil C_1 = 4 + \left\lceil \frac{R_2}{5} \right\rceil 2$

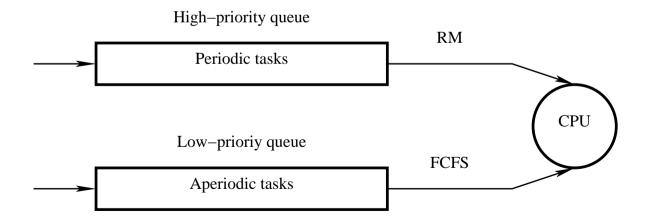
Iterate over R_2^k with $R_2^0 = 0$:

$$R_2^1 = 4 + \left\lceil \frac{R_2^0}{5} \right\rceil 2 = 4,$$
 $R_2^2 = 4 + \left\lceil \frac{4}{5} \right\rceil 2 = 6$ $R_2^3 = 4 + \left\lceil \frac{6}{5} \right\rceil 2 = 8,$ $R_2^4 = 4 + \left\lceil \frac{8}{5} \right\rceil 2 = 8 = R_2^3$

Scheduling Periodic and Aperiodic Tasks Together

Background Scheduling

- Schedule aperiodic tasks in the background (when CPU would be idle)
- May lead to long response time for aperiodic requests



Polling Server Scheduling

- A polling server is a periodic task that serves aperiodic tasks
- Gives guaranteed CPU utilization also for the aperiodic tasks

25

Polling Server

- A polling server task J_S is characterized by a period T_S and a server capacity C_S , as any other periodic task
- The polling server is scheduled by the algorithm for periodic tasks
- Once activated, the server starts serving the pending aperiodic requests within the limit of its capacity
- Several scheduling strategies possible for the aperiodic requests

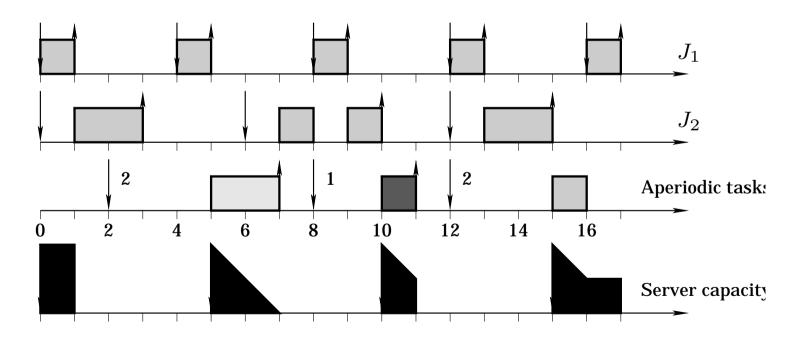
26

Example: RM Scheduling and Polling Server

Periodic task J_1 : $T_1 = 4$, $C_1 = 1$

Periodic task J_2 : $T_2=6$, $C_2=2$

Server task J_S : $T_S = 5$, $C_S = 2$



Subtask Scheduling

- It is often suitable to divide tasks into subtasks, e.g., control tasks
- May create dependency, so it is in general harder to design schedule

28

Control Tasks

Each control task J_k is dived into four subtasks:

 J_k^{AD} AD conversion

 J_k^{CO} Calculate controller output

 J_k^{DA} DA conversion

 J_k^{US} Update state

```
nexttime = getCurrentTime();
while (true) {
  AD_conversion();
  calculateOutput();
  DA_conversion();
  updateState();
  nexttime = nexttime + h;
  sleepUntil(nexttime);
```

Design Control Task Schedule

- Set $D^{US} = T$ for all tasks
- ullet Minimize D^{CO} for all tasks

Next Lecture

Models of computation

• Discrete-event systems