Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/ Lecture 8

P. C. Weeraddana
KTH Royal Institute of Technology
http://www.ee.kth.se/~chatw/home.htm
e-mail: chatw@kth.se

February 11, 2013

Course content

- Part 1
 - ► Lec 1: Introduction
 - ▶ Lec 2: Programming
- Part 2
 - ► Lec 3: The wireless channel
 - ► Lec 4: Physical layer
 - ► Lec 5: Mac layer
 - ► Lec 6: Routing
- Part 3
 - ▶ Lec 7: Distributed detection
 - ► Lec 8: Distributed estimation
 - ▶ Lec 9: Positioning and localization
 - ▶ Lec 10: Time synchronization
- Part 4
 - ▶ Lec 11: Networked control systems 1
 - ► Lec 12: Networked control systems 2
 - ▶ Lec 13: Summary and project presentations

Today's Lecture

Today we study how to perform estimation from noisy measurements of the sensors

Motivation

- plays a central role in many networked applications
- accurately predicts the parameters of a phenomenon
- communication: position, navigation
- monitoring: pollutant, earthquake magnitude
- surveillance: crowd density, attitude

Today's Learning Goals

- overview on some of the fundamental aspects of distributed estimation over networks
 - star topology
 - general topology
 - LMMSE estimate
 - static sensor fusion
- advanced topics
 - sequential measurements from one sensor
 - sequential measurements from many sensors (dynamic sensor fusion)
 - dynamic sensor fusion, distributed Kalman filtering
 - static sensor fusion with limited communication range

Outline

- Star Topology
- General Topology
- One Sensor Case
- Combining Estimators from Many Sensors (Star Topology)
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
- Combining Estimators from Many Sensors (Arbitrary Topology)

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Topology 1: Star Topology

Figure: Network with a Star Topology: Solid lines indicating that there is message communication between nodes. In this network, Node 9 can receive information from all other nodes. Thus Node 9 is the central unit.

- the **phenomenon** is observed by a number of sensors organized as a star
- multiple sensors make measurements
- measurements are transmitted to a fusion center (no messages losses are assumed)

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Topology 2: General Topology

Figure: Network with a Arbitrary Topology: Solid lines indicating that there is message communication between nodes. In this network, there is no node acting as fusion center.

- the **phenomenon** is observed by a number of sensors organized arbitrarily
- multiple sensors make measurements
- measurements are not transmitted to a fusion center
 - indeed, no fusion center. every node is a sort of local fusion center

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Model of the measurements for one sensor

- to start with, we consider only one sensor
- linear measurements (i.e., measurements and the parameters are related linearly) with noise or measurement errors

$$y = Hx + v \tag{1}$$

- y: sensor measurement(s)
- H: a known matrix
- x: what we want to estimate
- v: unknown noise or measurement error

Model of the measurements for one sensor

- to start with, we consider only one sensor
- linear measurements (i.e., measurements and the parameters are related linearly) with noise or measurement errors

$$y = Hx + v \tag{1}$$

- y: sensor measurement(s)
- H: a known matrix
- x: what we want to estimate
- v: unknown noise or measurement error
- goal: how to estimate **x** out of the measurement **y** ?

Model of the Estimator

linear estimator, i.e.,

$$\hat{\mathbf{x}}(\mathbf{L}) = \mathbf{L}\mathbf{y}$$

- y: sensor measurement(s)
- $\hat{\mathbf{x}}(\mathbf{L})$: estimator of \mathbf{x} , dependent on \mathbf{L}
- we need to compute a good estimate $\hat{\mathbf{x}}(\cdot) \Rightarrow$ what matrix \mathbf{L} to be used ?
- ullet performance criterion for computing ${f L}$?

Mean Squared Error (MSE) to Chose L

a good estimate $\hat{\mathbf{x}}(\cdot)$ is found by considering the **MSE**, which is given by the trace of **error covariance matrix** \mathbf{C} of the estimator

• in particular, for fixed L, MSE is defined as

$$\begin{aligned} \text{MSE}(\mathbf{L}) &= \mathsf{Tr} \left\{ \mathbf{C}(\mathbf{L}) \right\} \\ &= \mathsf{Tr} \left\{ \mathsf{E} \left\{ (\hat{\mathbf{x}}(\mathbf{L}) - \mathbf{x}) (\hat{\mathbf{x}}(\mathbf{L}) - \mathbf{x})^\mathsf{T} \right\} \right\} \\ &= \sum_{i=1}^{N} \mathsf{E} (\hat{x}_i(\mathbf{L}) - x_i)^2 \end{aligned}$$

- let $\mathbf{L}^* = \arg\min_{\mathbf{L}} \mathrm{MSE}(\mathbf{L})$
- then, $\hat{\mathbf{x}} = \mathbf{L}^{\star}\mathbf{y}$ is called the **linear minimum MSE (LMMSE)** estimate of \mathbf{x}

Proposition 1: Consider a random variable x being observed by a sensor that generate measurements of the form (1), i.e., y = Hx + v. Then LMMSE estimator of x given y is given by

$$\hat{\mathbf{x}} = \underbrace{\mathbf{P}\mathbf{H}^{\mathsf{T}}\mathbf{R}_{\mathbf{v}}^{-1}}_{\mathbf{L}^{\star}}\mathbf{y} , \qquad (2)$$

where

$$\mathbf{P} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}\right)^{-1} ,$$

 $\mathbf{R}_{\mathbf{x}}$ is the covariance matrix of \mathbf{x} , and $\mathbf{R}_{\mathbf{v}}$ is the noise covariance matrix.

Proposition 1: Consider a random variable x being observed by a sensor that generate measurements of the form (1), i.e., y = Hx + v. Then LMMSE estimator of x given y is given by

$$\hat{\mathbf{x}} = \underbrace{\mathbf{P}\mathbf{H}^{\mathsf{T}}\mathbf{R}_{\mathbf{v}}^{-1}}_{\mathbf{L}^{\star}}\mathbf{y} , \qquad (2)$$

where

$$\mathbf{P} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}\right)^{-1} ,$$

 $\mathbf{R}_{\mathbf{x}}$ is the covariance matrix of \mathbf{x} , and $\mathbf{R}_{\mathbf{v}}$ is the noise covariance matrix.

 \bullet we need to show that $\mathbf{L}^{\star} = \mathbf{P}\mathbf{H}^{\mathsf{T}}\mathbf{R}_{\mathbf{v}}^{-1}$

advanced topic, no requested to the exam

advanced topic, no requested to the exam

Proof:

preliminaries:

- (1) $\mathbf{A} + \mathbf{B} \succeq \mathbf{B}$ when $\mathbf{A} \succeq \mathbf{0}$
- $(2) \quad \mathbf{A} \succeq \mathbf{B} \Rightarrow \mathsf{Tr}(\mathbf{L}) \geq \mathsf{Tr}(\mathbf{B})$
- (3) $(\mathbf{A} + \mathbf{BC})^{-1} = \mathbf{A}^{-1} \mathbf{A}^{-1} \mathbf{B} (\mathbf{I} + \mathbf{C} \mathbf{A}^{-1} \mathbf{B})^{-1} \mathbf{C} \mathbf{A}^{-1}$

Proof:

$$\begin{split} \mathbf{C}(\mathbf{L}) &= \mathsf{E}\left\{\left(\hat{\mathbf{x}}(\mathbf{L}) - \mathbf{x}\right)\left(\hat{\mathbf{x}}(\mathbf{L}) - \mathbf{x}\right)^{\mathsf{T}}\right\} = \mathsf{E}\left\{\left(\mathbf{L}\mathbf{y} - \mathbf{x}\right)\left(\mathbf{L}\mathbf{y} - \mathbf{x}\right)^{\mathsf{T}}\right\} \\ &= \mathsf{E}\left\{\left(\mathbf{L}\mathbf{H} - \mathbf{I}\right)\mathbf{x}\mathbf{x}^{\mathsf{T}}\left(\mathbf{L}\mathbf{H} - \mathbf{I}\right)^{\mathsf{T}} + \mathbf{L}\mathbf{v}\mathbf{v}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}\right\} = \left(\mathbf{L}\mathbf{H} - \mathbf{I}\right)\mathbf{R}_{\mathbf{x}}\left(\mathbf{L}\mathbf{H} - \mathbf{I}\right)^{\mathsf{T}} + \mathbf{L}\mathbf{R}_{\mathbf{v}}\mathbf{L}^{\mathsf{T}} \\ &= \mathbf{L}\left(\mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{\mathbf{v}}\right)\mathbf{L}^{\mathsf{T}} - \mathbf{L}\mathbf{H}\mathbf{R}_{\mathbf{x}} - \mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}} + \mathbf{R}_{\mathbf{x}} \\ &= \left(\mathbf{L} - \mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}}\left(\mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{\mathbf{v}}\right)^{-1}\right)\!\!\left(\mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{\mathbf{v}}\right)\!\!\left(\mathbf{L} - \mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}}\left(\mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{\mathbf{v}}\right)^{-1}\right)^{\mathsf{T}} \\ &+ \mathbf{R}_{\mathbf{x}} - \mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}}\left(\mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{\mathbf{v}}\right)^{-1}\mathbf{H}\mathbf{R}_{\mathbf{x}} \\ &\succeq \mathbf{R}_{\mathbf{x}} - \mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}}\left(\mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{\mathbf{v}}\right)^{-1}\mathbf{H}\mathbf{R}_{\mathbf{x}} \end{split} \tag{3}$$

Proof:

$$\begin{split} \mathbf{C}(\mathbf{L}) &= \mathsf{E}\left\{ \left(\hat{\mathbf{x}}(\mathbf{L}) - \mathbf{x}\right) \left(\hat{\mathbf{x}}(\mathbf{L}) - \mathbf{x}\right)^\mathsf{T} \right\} = \mathsf{E}\left\{ \left(\mathbf{L}\mathbf{y} - \mathbf{x}\right) \left(\mathbf{L}\mathbf{y} - \mathbf{x}\right)^\mathsf{T} \right\} \\ &= \mathsf{E}\left\{ \left(\mathbf{L}\mathbf{H} - \mathbf{I}\right) \mathbf{x} \mathbf{x}^\mathsf{T} \left(\mathbf{L}\mathbf{H} - \mathbf{I}\right)^\mathsf{T} + \mathbf{L}\mathbf{v} \mathbf{v}^\mathsf{T} \mathbf{L}^\mathsf{T} \right\} = \left(\mathbf{L}\mathbf{H} - \mathbf{I}\right) \mathbf{R}_{\mathbf{x}} \left(\mathbf{L}\mathbf{H} - \mathbf{I}\right)^\mathsf{T} + \mathbf{L}\mathbf{R}_{\mathbf{v}} \mathbf{L}^\mathsf{T} \\ &= \mathbf{L} \left(\mathbf{H}\mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}}\right) \mathbf{L}^\mathsf{T} - \mathbf{L}\mathbf{H}\mathbf{R}_{\mathbf{x}} - \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{L}^\mathsf{T} + \mathbf{R}_{\mathbf{x}} \\ &= \left(\mathbf{L} - \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \left(\mathbf{H}\mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}}\right)^{-1}\right) \left(\mathbf{H}\mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}}\right) \left(\mathbf{L} - \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \left(\mathbf{H}\mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}}\right)^{-1}\right)^\mathsf{T} \\ &+ \mathbf{R}_{\mathbf{x}} - \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \left(\mathbf{H}\mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}}\right)^{-1} \mathbf{H}\mathbf{R}_{\mathbf{x}} \\ &\succeq \mathbf{R}_{\mathbf{x}} - \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \left(\mathbf{H}\mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}}\right)^{-1} \mathbf{H}\mathbf{R}_{\mathbf{x}} \end{split} \tag{3}$$

the lower bound is achieved when

The lower bound is achieved when
$$\begin{split} \mathbf{L} &= \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \left(\mathbf{H} \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} + \mathbf{R}_{\mathbf{v}} \right)^{-1} \\ &= \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \left(\mathbf{R}_{\mathbf{v}}^{-1} - \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H} \left(\mathbf{I} + \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H} \right)^{-1} \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \right) \\ &= \left(\mathbf{I} - \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H} \left(\mathbf{I} + \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H} \right)^{-1} \right) \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \\ &= \left(\mathbf{I} + \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H} \right)^{-1} \mathbf{R}_{\mathbf{x}} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H} \right)^{-1} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} = \mathbf{P} \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \ \Box \end{split}$$

recap:

Consider the linear system of measurements given in (1), i.e., y = Hx + v. Let $\hat{\mathbf{x}}$ denote the LMMSE estimator of \mathbf{x} given \mathbf{y} . Then we have

$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{y} , \qquad (4)$$

$$\mathbf{P} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}\right)^{-1} = \mathsf{error}$$
 covariance of $\hat{\mathbf{x}}$.

recap:

Consider the linear system of measurements given in (1), i.e., $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$. Let $\hat{\mathbf{x}}$ denote the LMMSE estimator of \mathbf{x} given \mathbf{y} . Then we have

$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{y} , \qquad (4)$$

$$\mathbf{P} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}\right)^{-1} = \mathsf{error}$$
 covariance of $\hat{\mathbf{x}}$.

- relation (4) has been derived for the case of one sensor
- in the case of multiple sensors, relation (4) suggests the possibility of combining local estimates directly

recap:

Consider the linear system of measurements given in (1), i.e., $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$. Let $\hat{\mathbf{x}}$ denote the LMMSE estimator of \mathbf{x} given \mathbf{y} . Then we have

$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{y} , \qquad (4)$$

$$\mathbf{P} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}\right)^{-1} = \mathsf{error} \;\; \mathsf{covariance} \;\; \mathsf{of} \;\; \hat{\mathbf{x}}.$$

- relation (4) has been derived for the case of one sensor
- in the case of multiple sensors, relation (4) suggests the possibility of combining local estimates directly
- no need to sending all the measurements to a central data processing

recap:

Consider the linear system of measurements given in (1), i.e., y = Hx + v. Let $\hat{\mathbf{x}}$ denote the LMMSE estimator of \mathbf{x} given \mathbf{y} . Then we have

$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{y} , \qquad (4)$$

$$\mathbf{P} = \left(\mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}\right)^{-1} = \mathsf{error}$$
 covariance of $\hat{\mathbf{x}}$.

- relation (4) has been derived for the case of one sensor
- in the case of multiple sensors, relation (4) suggests the possibility of combining local estimates directly
- no need to sending all the measurements to a central data processing
- this is called static sensor fusion

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Figure: Network with a Star Topology: Solid lines indicating that there is message communication between nodes. In this network, Node 9 can receive information from all other nodes. Thus Node 9 is the central unit.

• now we move to a case of many sensors in a star topology

Proposition 2: Consider a random variable \mathbf{x} being observed by K sensors that generate measurements of the form

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x} + \mathbf{v}_k, \quad k = 1, \dots, K . \tag{5}$$

- \mathbf{y}_k : kth sensor measurement(s)
- \mathbf{H}_k : a matrix known to the kth sensor
- x. what we want to estimate
- \mathbf{v}_k : noise or measurement error at kth sensor, \mathbf{v}_k and \mathbf{v}_i ($i \neq k$) are uncorelated

Proposition 2: Consider a random variable ${\bf x}$ being observed by K sensors that generate measurements of the form

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x} + \mathbf{v}_k, \quad k = 1, \dots, K . \tag{5}$$

- \mathbf{y}_k : kth sensor measurement(s)
- \mathbf{H}_k : a matrix known to the kth sensor
- x: what we want to estimate
- \mathbf{v}_k : noise or measurement error at kth sensor, \mathbf{v}_k and \mathbf{v}_i $(j \neq k)$ are uncorelated

Let $\hat{\mathbf{x}}$ denote the LMMSE estimator of \mathbf{x} given $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_K)$, as obtained at the fusion center. Then

$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \sum_{k=1}^{K} \mathbf{P}_k^{-1} \hat{\mathbf{x}}_k , \text{ where}$$
 (6)

where P is the estimate error covariance corresponding to $\hat{\mathbf{x}}$ and P_k is the error covariance corresponding to $\hat{\mathbf{x}}_k$.

Proposition 2: Consider a random variable ${\bf x}$ being observed by K sensors that generate measurements of the form

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x} + \mathbf{v}_k, \quad k = 1, \dots, K . \tag{5}$$

- \mathbf{y}_k : kth sensor measurement(s)
- \mathbf{H}_k : a matrix known to the kth sensor
- x: what we want to estimate
- \mathbf{v}_k : noise or measurement error at kth sensor, \mathbf{v}_k and \mathbf{v}_i $(j \neq k)$ are uncorelated

Let $\hat{\mathbf{x}}$ denote the LMMSE estimator of \mathbf{x} given $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_K)$, as obtained at the fusion center. Then

$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \sum_{k=1}^{K} \mathbf{P}_k^{-1}\hat{\mathbf{x}}_k$$
 , where (6)

where P is the estimate error covariance corresponding to $\hat{\mathbf{x}}$ and P_k is the error covariance corresponding to $\hat{\mathbf{x}}_k$. Furthermore,

$$\mathbf{P}^{-1} = -(K-1)\mathbf{R}_{\mathbf{x}}^{-1} + \sum_{k=1}^{K} \mathbf{P}_{k}^{-1},$$
 (7)

 $\mathbf{R}_{\mathbf{x}}$ is the covariance matrix of $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_K)$.

Proof of Proposition 2

Proof: Note that overall linear system is given by

$$\underbrace{\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_K \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} \mathbf{H}_1 \\ \vdots \\ \mathbf{H}_K \end{bmatrix}}_{\mathbf{H}} \mathbf{x} + \underbrace{\begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_K \end{bmatrix}}_{\mathbf{y}} \tag{8}$$

Now use Proposition 1

Proposition 1
$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \mathbf{H}^{\mathsf{T}}\mathbf{R}_{\mathbf{v}}^{-1}\mathbf{y} = \begin{bmatrix} \mathbf{H}_{1}^{\mathsf{T}} \cdots \mathbf{H}_{K}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{v}_{1}}^{-1} & 0 & \cdots & 0 \\ 0 & \mathbf{R}_{\mathbf{v}_{2}}^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{R}_{\mathbf{v}_{K}}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{K} \end{bmatrix}$$
(9)

$$= \sum_{k=1}^{K} \mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}_{k}}^{-1} \mathbf{y}_{k} \tag{10}$$

$$=\sum_{k=1}^{K} \mathbf{P}_k^{-1} \hat{\mathbf{x}}_k \tag{11}$$

Proof of Proposition 2

Proof: Note that overall linear system is given by

$$\underbrace{\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_K \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} \mathbf{H}_1 \\ \vdots \\ \mathbf{H}_K \end{bmatrix}}_{\mathbf{H}} \mathbf{x} + \underbrace{\begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_K \end{bmatrix}}_{\mathbf{y}} \tag{8}$$

Now use Proposition 1

Proposition 1
$$\mathbf{P}^{-1}\hat{\mathbf{x}} = \mathbf{H}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{y} = \begin{bmatrix} \mathbf{H}_{1}^{\mathsf{T}} \cdots \mathbf{H}_{K}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{v}_{1}}^{-1} & 0 & \cdots & 0 \\ 0 & \mathbf{R}_{\mathbf{v}_{2}}^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{R}_{\mathbf{v}_{K}}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{K} \end{bmatrix}$$
(9)

$$= \sum_{k=1}^{K} \mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}_{k}}^{-1} \mathbf{y}_{k} \tag{10}$$

$$=\sum_{k=1}^{K} \mathbf{P}_k^{-1} \hat{\mathbf{x}}_k \tag{11}$$

Moreover, from Proposition 1

$$\mathbf{P}^{-1} = \mathbf{R}_{\mathbf{x}}^{-1} + \mathbf{\underline{H}}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{\underline{H}}$$
 (12)

$$= \mathbf{R}_{\mathbf{x}}^{-1} + \sum_{k=1}^{K} \mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{\mathbf{v}_{k}}^{-1} \mathbf{H}_{k}$$

$$(13)$$

$$= \mathbf{R}_{\mathbf{x}}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{k}^{-1} - \mathbf{R}_{\mathbf{x}}^{-1} \right) = -(K-1)\mathbf{R}_{\mathbf{x}}^{-1} + \sum_{k=1}^{K} \mathbf{P}_{k}^{-1} , \qquad (14)$$

Static Sensor Fusion from Multiple Sensors

- by Proposition 2, complexity of the fusion center goes down considerably
- some computational load is delegated to the distributed sensors
- each estimate is weighted by the inverse of the error covariance matrix

• the **higher the confidence** we have in a particular sensor, the **higher the trust** we place in it.

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Sequential Measurements from One Sensor

Proposition 3: Consider a phenomenon ${\bf x}$ evolving in time (indexed by n) according to

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$$

Sequential Measurements from One Sensor

Proposition 3: Consider a phenomenon ${\bf x}$ evolving in time (indexed by n) according to

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$$

Every time step sensor generates a measurement of the form

$$\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$$

- \mathbf{w}_n : white zero mean Gaussian with covariance matrix $\mathsf{E}\{\mathbf{w}_n\mathbf{\underline{w}}_n^\mathsf{T}\}=\mathbf{Q}$
- \mathbf{v}_n : white zero mean Gaussian with covariance matrix $\mathsf{E}\{\mathbf{v}_n\mathbf{v}_n^\mathsf{T}\}=\mathbf{R}$
- A: a known nonsingular matrix
- C: a known matrix

Proposition 3: Consider a phenomenon x evolving in time (indexed by n) according to

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$$

Every time step sensor generates a measurement of the form

$$\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$$

- \mathbf{w}_n : white zero mean Gaussian with covariance matrix $\mathsf{E}\{\mathbf{w}_n\mathbf{w}_n^\mathsf{T}\}=\mathbf{Q}$
- \mathbf{v}_n : white zero mean Gaussian with covariance matrix $\mathsf{E}\{\mathbf{v}_n\mathbf{v}_n^\mathsf{T}\}=\mathbf{R}$
- A: a known nonsingular matrix
- C: a known matrix

Then we have

$$\hat{\mathbf{x}}_{n|n-1} = \mathbf{A}\hat{\mathbf{x}}_{n-1|n-1} \tag{15}$$

$$\mathbf{P}_{n|n-1} = \mathbf{A}\mathbf{P}_{n-1|n-1}\mathbf{A}^{\mathsf{T}} + \mathbf{Q} \tag{16}$$

- $\hat{\mathbf{x}}_{n-1|n-1}$: estimate of \mathbf{x}_{n-1} given $\mathbf{z} = (\mathbf{y}_0, \dots, \mathbf{y}_{n-1})$ $\mathbf{P}_{n-1|n-1}$: corresponding error covariance matrix

 $\hat{\mathbf{x}}_{n-1|n-1}$: estimate of \mathbf{x}_{n-1} given $\mathbf{z} = (\mathbf{y}_0, \dots, \mathbf{y}_{n-1})$?

$$\mathbf{y}_{n-1} = \mathbf{C}\mathbf{x}_{n-1} + \mathbf{v}_{n-1} \tag{17}$$

$$\mathbf{y}_{n-2} = \mathbf{C}\mathbf{x}_{n-2} + \mathbf{v}_{n-2} = \mathbf{C}(\mathbf{A}^{-1}(\mathbf{x}_{n-1} - \mathbf{w}_{n-2})) + \mathbf{v}_{n-2}$$
 (18)

$$= \mathbf{C}\mathbf{A}^{-1}\mathbf{x}_{n-1} + \left(\mathbf{v}_{n-2} - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_{n-2}\right)$$

$$\tag{19}$$

:

$$\mathbf{y}_0 = \mathbf{C}\mathbf{A}^{-(n-1)}\mathbf{x}_{n-1} + (\mathbf{v}_0 - \mathbf{C}\mathbf{A}^{-(n-1)}\mathbf{w}_{n-2} - \dots - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_0)$$
 (20)

 $\hat{\mathbf{x}}_{n-1|n-1}$: estimate of \mathbf{x}_{n-1} given $\mathbf{z} = (\mathbf{y}_0, \dots, \mathbf{y}_{n-1})$?

$$\mathbf{y}_{n-1} = \mathbf{C}\mathbf{x}_{n-1} + \mathbf{v}_{n-1} \tag{17}$$

$$\mathbf{y}_{n-2} = \mathbf{C}\mathbf{x}_{n-2} + \mathbf{v}_{n-2} = \mathbf{C}(\mathbf{A}^{-1}(\mathbf{x}_{n-1} - \mathbf{w}_{n-2})) + \mathbf{v}_{n-2}$$
 (18)

$$= \mathbf{C}\mathbf{A}^{-1}\mathbf{x}_{n-1} + \left(\mathbf{v}_{n-2} - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_{n-2}\right)$$
(19)

:

$$\mathbf{y}_0 = \mathbf{C}\mathbf{A}^{-(n-1)}\mathbf{x}_{n-1} + (\mathbf{v}_0 - \mathbf{C}\mathbf{A}^{-(n-1)}\mathbf{w}_{n-2} - \dots - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_0)$$
 (20)

i.e., the overall linear system is given by

$$\begin{bmatrix}
\mathbf{y}_{n-1} \\
\vdots \\
\mathbf{y}_{0}
\end{bmatrix} = \begin{bmatrix}
\mathbf{C} \\
\vdots \\
\mathbf{C}\mathbf{A}^{-(n-1)}
\end{bmatrix} \mathbf{x}_{n-1} + \begin{bmatrix}
\mathbf{v}_{n-1} \\
\vdots \\
\mathbf{v}_{0} - \dots - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_{0}
\end{bmatrix}$$
(21)

 $\hat{\mathbf{x}}_{n-1|n-1}$: estimate of \mathbf{x}_{n-1} given $\mathbf{z} = (\mathbf{y}_0, \dots, \mathbf{y}_{n-1})$?

$$\mathbf{y}_{n-1} = \mathbf{C}\mathbf{x}_{n-1} + \mathbf{v}_{n-1} \tag{17}$$

$$\mathbf{y}_{n-2} = \mathbf{C}\mathbf{x}_{n-2} + \mathbf{v}_{n-2} = \mathbf{C}(\mathbf{A}^{-1}(\mathbf{x}_{n-1} - \mathbf{w}_{n-2})) + \mathbf{v}_{n-2}$$
 (18)

$$= \mathbf{C}\mathbf{A}^{-1}\mathbf{x}_{n-1} + (\mathbf{v}_{n-2} - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_{n-2})$$
(19)

:

$$\mathbf{y}_0 = \mathbf{C}\mathbf{A}^{-(n-1)}\mathbf{x}_{n-1} + (\mathbf{v}_0 - \mathbf{C}\mathbf{A}^{-(n-1)}\mathbf{w}_{n-2} - \dots - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_0)$$
 (20)

i.e., the overall linear system is given by

$$\begin{bmatrix}
\mathbf{y}_{n-1} \\
\vdots \\
\mathbf{y}_{0}
\end{bmatrix} = \begin{bmatrix}
\mathbf{C} \\
\vdots \\
\mathbf{C}\mathbf{A}^{-(n-1)}
\end{bmatrix} \mathbf{x}_{n-1} + \begin{bmatrix}
\mathbf{v}_{n-1} \\
\vdots \\
\mathbf{v}_{0} - \dots - \mathbf{C}\mathbf{A}^{-1}\mathbf{w}_{0}
\end{bmatrix}$$
(21)

From Proposition 1

$$\mathbf{P}_{n-1|n-1}^{-1}\hat{\mathbf{x}}_{n-1|n-1} = \mathbf{H}^\mathsf{T}\mathbf{R}_\mathbf{u}^{-1}\mathbf{z}$$
 , where

$$\mathbf{P}_{n-1|n-1} = \left(\mathbf{R}_{\mathbf{x}_{n-1}}^{-1} + \mathbf{H}^\mathsf{T} \mathbf{R}_{\mathbf{u}}^{-1} \mathbf{H}\right)^{-1}$$

Question: how to show that $\hat{\mathbf{x}}_{n|n-1} = \mathbf{A}\hat{\mathbf{x}}_{n-1|n-1}$?

Question: how to show that $\hat{\mathbf{x}}_{n|n-1} = \mathbf{A}\hat{\mathbf{x}}_{n-1|n-1}$?

Answer:

use a well known result: MMSE estimate $\hat{\mathbf{x}}$ of a random variable \mathbf{x} given a random variable \mathbf{y} is $\mathsf{E}\{\mathbf{x}|\mathbf{y}\}$.

$$\begin{split} \hat{\mathbf{x}}_{n|n-1} &= \mathsf{E} \left\{ \mathbf{x}_{n} | (\mathbf{y}_{0}, \dots, \mathbf{y}_{n-1}) \right\} \\ &= \mathsf{E} \left\{ \mathbf{A} \mathbf{x}_{n-1} + \mathbf{w}_{n-1} | \mathbf{z} \right\} \\ &= \mathbf{A} \mathsf{E} \left\{ \mathbf{x}_{n-1} | \mathbf{z} \right\} \\ &= \mathbf{A} \hat{\mathbf{x}}_{n-1|n-1} \end{split}$$

Question: how to show that $P_{n|n-1} = AP_{n-1|n-1}A^T + Q$?

Question: how to show that $P_{n|n-1} = AP_{n-1|n-1}A^T + Q$?

Answer:

by the definition of error covariance, we already have:

$$\mathbf{P}_{n-1|n-1} = \mathsf{E}\{(\hat{\mathbf{x}}_{n-1|n-1} - \mathbf{x}_{n-1})(\hat{\mathbf{x}}_{n-1|n-1} - \mathbf{x}_{n-1})^{\mathsf{T}}\}$$
 (22)

$$\begin{split} \mathbf{P}_{n|n-1} &= \mathsf{E}\{(\hat{\mathbf{x}}_{n|n-1} - \mathbf{x}_n)(\hat{\mathbf{x}}_{n|n-1} - \mathbf{x}_n)^\mathsf{T}\} \\ &= \mathsf{E}\{(\mathbf{A}\hat{\mathbf{x}}_{n-1|n-1} - \mathbf{A}\mathbf{x}_{n-1} - \mathbf{w}_{n-1})(\mathbf{A}\hat{\mathbf{x}}_{n-1|n-1} - \mathbf{A}\mathbf{x}_{n-1} - \mathbf{w}_{n-1})^\mathsf{T}\} \\ &= \mathsf{E}\{\mathbf{A}(\hat{\mathbf{x}}_{n-1|n-1} - \mathbf{x}_{n-1})(\hat{\mathbf{x}}_{n-1|n-1} - \mathbf{x}_{n-1})^\mathsf{T}\mathbf{A}^\mathsf{T} + \mathbf{w}_{n-1}\mathbf{w}_{n-1}^\mathsf{T}\} \\ &= \mathbf{A}\mathbf{P}_{n-1|n-1}\mathbf{A}^\mathsf{T} + \mathbf{Q} \end{split}$$

Question: $\hat{\mathbf{x}}_{n|n}$, the MMSE estimate of \mathbf{x}_n given $(\mathbf{y}_0, \dots, \mathbf{y}_{n-1}, \mathbf{y}_n) = (\mathbf{z}, \mathbf{y}_n)$

Question: $\hat{\mathbf{x}}_{n|n}$, the MMSE estimate of \mathbf{x}_n given $(\mathbf{y}_0, \dots, \mathbf{y}_{n-1}, \mathbf{y}_n) = (\mathbf{z}, \mathbf{y}_n)$ **Answer:** apply Proposition 2 (Static Sensor Fusion) in a straightforward manner

Question: $\hat{\mathbf{x}}_{n|n}$, the MMSE estimate of \mathbf{x}_n given $(\mathbf{y}_0, \dots, \mathbf{y}_{n-1}, \mathbf{y}_n) = (\mathbf{z}, \mathbf{y}_n)$ **Answer:** apply Proposition 2 (Static Sensor Fusion) in a straightforward manner

we already know $\hat{\mathbf{x}}_{n|n-1}$, i.e., the estimate of \mathbf{x}_n given \mathbf{z} we already know $\mathbf{P}_{n|n-1}$, the corresponding error covariance matrix

Question: $\hat{\mathbf{x}}_{n|n}$, the MMSE estimate of \mathbf{x}_n given $(\mathbf{y}_0, \dots, \mathbf{y}_{n-1}, \mathbf{y}_n) = (\mathbf{z}, \mathbf{y}_n)$ **Answer:** apply Proposition 2 (Static Sensor Fusion) in a straightforward manner

we already know $\hat{\mathbf{x}}_{n|n-1}$, i.e., the estimate of \mathbf{x}_n given \mathbf{z} we already know $\mathbf{P}_{n|n-1}$, the corresponding error covariance matrix

we **need** the estimate of \mathbf{x}_n given \mathbf{y}_n , denote it by $\hat{\mathbf{x}}$ we **need** the corresponding error covariance matrix, denote it by \mathbf{M}

Question: $\hat{\mathbf{x}}_{n|n}$, the MMSE estimate of \mathbf{x}_n given $(\mathbf{y}_0, \dots, \mathbf{y}_{n-1}, \mathbf{y}_n) = (\mathbf{z}, \mathbf{y}_n)$ **Answer:** apply Proposition 2 (Static Sensor Fusion) in a straightforward manner

we already know $\hat{\mathbf{x}}_{n|n-1}$, i.e., the estimate of \mathbf{x}_n given \mathbf{z} we already know $\mathbf{P}_{n|n-1}$, the corresponding error covariance matrix

we **need** the estimate of \mathbf{x}_n given \mathbf{y}_n , denote it by $\hat{\mathbf{x}}$ we **need** the corresponding error covariance matrix, denote it by \mathbf{M} because $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$, from Proposition 1, we have

$$\hat{\mathbf{x}} = \mathbf{M}\mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{y}_n$$
 , where $\mathbf{M} = \left(\mathbf{R}_{\mathbf{x}_n}^{-1} + \mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{C}\right)^{-1}$

Question: $\hat{\mathbf{x}}_{n|n}$, the MMSE estimate of \mathbf{x}_n given $(\mathbf{y}_0, \dots, \mathbf{y}_{n-1}, \mathbf{y}_n) = (\mathbf{z}, \mathbf{y}_n)$ **Answer:** apply Proposition 2 (Static Sensor Fusion) in a straightforward manner

we already know $\hat{\mathbf{x}}_{n|n-1}$, i.e., the estimate of \mathbf{x}_n given \mathbf{z} we already know $\mathbf{P}_{n|n-1}$, the corresponding error covariance matrix

we **need** the estimate of \mathbf{x}_n given \mathbf{y}_n , denote it by $\hat{\mathbf{x}}$ we **need** the corresponding error covariance matrix, denote it by \mathbf{M} because $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$, from Proposition 1, we have

$$\hat{\mathbf{x}} = \mathbf{M}\mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{y}_n$$
 , where $\mathbf{M} = \left(\mathbf{R}_{\mathbf{x}_n}^{-1} + \mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{C}\right)^{-1}$

from Proposition 2

$$\mathbf{P}_{n|n}^{-1}\hat{\mathbf{x}}_{n|n} = \mathbf{P}_{n|n-1}^{-1}\hat{\mathbf{x}}_{n|n-1} + \mathbf{M}^{-1}\hat{\mathbf{x}}$$
 , where (23)

$$\mathbf{P}_{n|n}^{-1} = -\mathbf{R}_{\mathbf{x}_n}^{-1} + \mathbf{P}_{n|n-1}^{-1} + \mathbf{M}^{-1}$$
(24)

- time and measurement update steps of the Kalman filter
- Kalman filter can be seen to be a combination of estimators
- optimality of the Kalman filter in the minimum mean squared sense

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Dynamic Sensor Fusion

Consider a phenomenon ${\bf x}$ evolving in time (indexed by n) according to the law

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$$

Dynamic Sensor Fusion

Consider a phenomenon ${\bf x}$ evolving in time (indexed by n) according to the law

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$$

Every time step, sensor k generates a measurement of the form

$$\mathbf{y}_{n,k} = \mathbf{C}_k \mathbf{x}_n + \mathbf{v}_{n,k}$$

Dynamic Sensor Fusion

Consider a phenomenon ${\bf x}$ evolving in time (indexed by n) according to the law

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$$

Every time step, sensor k generates a measurement of the form

$$\mathbf{y}_{n,k} = \mathbf{C}_k \mathbf{x}_n + \mathbf{v}_{n,k}$$

- **multiple sensors** that generate measurements about the random variable that is evolving in time
- **Question:** how to **fuse data** from all the sensors for an estimate of the state \mathbf{x}_n at time step n

Dynamic Sensor Fusion, Centralized Setup

- at every time step n, all the sensors **transmit** their measurements $\mathbf{y}_{n,k}$ to a **central node**
- the central node implements a fusion mechanism
- however, there are two reasons why this may not be the preferred implementation
 - (1) number of sensors increases \Rightarrow computational effort required at the central node increases (bear some of the computational burden at sensors)
- (2) the sensors may not be able to transmit at every time step (transmit local processed information rather that raw measurements)

- assume that the sensors can transmit at every time step
- reducing the computational burden at the central node?

let $\mathbf{y}_k = (\mathbf{y}_{0,k}, \mathbf{y}_{1,k}, \dots, \mathbf{y}_{n,k})$ denote the measurements from sensor k that is used to estimate \mathbf{x}_n

let $\mathbf{y}_k = (\mathbf{y}_{0,k}, \mathbf{y}_{1,k}, \dots, \mathbf{y}_{n,k})$ denote the measurements from sensor k that is used to estimate \mathbf{x}_n

potential method 1

the overall linear system is given by

$$\begin{bmatrix}
\mathbf{y}_{n,k} \\
\mathbf{y}_{n-1,k} \\
\vdots \\
\mathbf{y}_{0,k}
\end{bmatrix} = \begin{bmatrix}
\mathbf{C}_{k} \\
\mathbf{C}_{k} \mathbf{A}^{-1} \\
\vdots \\
\mathbf{C}_{k} \mathbf{A}^{-n}
\end{bmatrix} \mathbf{x}_{n} + \begin{bmatrix}
\mathbf{v}_{n,k} \\
\mathbf{v}_{n-1,k} - \mathbf{C}_{k} \mathbf{A}^{-1} \mathbf{w}_{n-1} \\
\vdots \\
\mathbf{v}_{0,k} - \dots - \mathbf{C}_{k} \mathbf{A}^{-1} \mathbf{w}_{0}
\end{bmatrix}$$
(25)

let $\mathbf{y}_k = (\mathbf{y}_{0,k}, \mathbf{y}_{1,k}, \dots, \mathbf{y}_{n,k})$ denote the measurements from sensor k that is used to estimate \mathbf{x}_n

potential method 1

the overall linear system is given by

$$\begin{bmatrix}
\mathbf{y}_{n,k} \\
\mathbf{y}_{n-1,k} \\
\vdots \\
\mathbf{y}_{0,k}
\end{bmatrix} = \begin{bmatrix}
\mathbf{C}_{k} \\
\mathbf{C}_{k} \mathbf{A}^{-1} \\
\vdots \\
\mathbf{C}_{k} \mathbf{A}^{-n}
\end{bmatrix} \mathbf{x}_{n} + \begin{bmatrix}
\mathbf{v}_{n,k} \\
\mathbf{v}_{n-1,k} - \mathbf{C}_{k} \mathbf{A}^{-1} \mathbf{w}_{n-1} \\
\vdots \\
\mathbf{v}_{0,k} - \dots - \mathbf{C}_{k} \mathbf{A}^{-1} \mathbf{w}_{0}
\end{bmatrix}$$
(25)

- process noise w_n appears in the noise ⇒ the measurement noises v_k are not independent as desired
- \mathbf{v}_k are not independent \Rightarrow the noise is correlated
- ◆ Proposition 2 does not apply for combining local estimates

let $\mathbf{y}_k = (\mathbf{y}_{0,k}, \mathbf{y}_{1,k}, \dots, \mathbf{y}_{n,k})$ denote the measurements from sensor k that is used to estimate \mathbf{x}_n

let $\mathbf{y}_k = (\mathbf{y}_{0,k}, \mathbf{y}_{1,k}, \dots, \mathbf{y}_{n,k})$ denote the measurements from sensor k that is used to estimate \mathbf{x}_n

potential method 2: estimate of x_0 known \Rightarrow estimate of x_n known

the overall linear system is given by

$$\begin{bmatrix}
\mathbf{y}_{n,k} \\
\mathbf{y}_{n-1,k} \\
\vdots \\
\mathbf{y}_{0,k}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{C}_{k} \mathbf{A}^{n} & \mathbf{C}_{k} \mathbf{A}^{n-1} & \cdots & \mathbf{C}_{k} \\
\mathbf{C}_{k} \mathbf{A}^{n-1} & \cdots & \mathbf{C}_{k} & 0 \\
\mathbf{C}_{k} \mathbf{A}^{n-2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & 0 \\
\mathbf{C}_{k} & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_{0} \\
\mathbf{w}_{0} \\
\vdots \\
\mathbf{w}_{n-1}
\end{bmatrix} +
\begin{bmatrix}
\mathbf{v}_{n,k} \\
\mathbf{v}_{n-1,k} \\
\vdots \\
\mathbf{v}_{0,k}
\end{bmatrix}$$
(26)

let $\mathbf{y}_k=(\mathbf{y}_{0,k},\mathbf{y}_{1,k},\ldots,\mathbf{y}_{n,k})$ denote the measurements from sensor k that is used to estimate \mathbf{x}_n

potential method 2: estimate of x_0 known \Rightarrow estimate of x_n known

the overall linear system is given by

$$\begin{bmatrix}
\mathbf{y}_{n,k} \\
\mathbf{y}_{n-1,k} \\
\vdots \\
\mathbf{y}_{0,k}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{C}_{k} \mathbf{A}^{n} & \mathbf{C}_{k} \mathbf{A}^{n-1} & \cdots & \mathbf{C}_{k} \\
\mathbf{C}_{k} \mathbf{A}^{n-1} & \cdots & \mathbf{C}_{k} & 0 \\
\mathbf{C}_{k} \mathbf{A}^{n-2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & 0 \\
\mathbf{C}_{k} & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_{0} \\
\mathbf{w}_{0} \\
\vdots \\
\mathbf{w}_{n-1}
\end{bmatrix} +
\begin{bmatrix}
\mathbf{v}_{n,k} \\
\mathbf{v}_{n-1,k} \\
\vdots \\
\mathbf{v}_{0,k}
\end{bmatrix}$$
(26)

- the measurement noises v_k are independent as desired
- ⇒ Proposition 2 does apply for combining local estimates
- ullet vectors transmitted from sensors are increasing in dimension as the time step n increases.

Dynamic Sensor Fusion, Centralized Setup (Drawbacks)

- practically, it is not feasible to combine local estimates from method 2 to obtain the global estimate
- i.e., lots of communication overhead

- if there is no process noise, then the method 1 will work
- however, in general it is not possible

• recall: Sequential Measurements from One Sensor

- recall: Sequential Measurements from One Sensor
- random variable evolution: $\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$
- ullet measurements: $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$, where $\mathsf{E}\{\mathbf{v}_n\mathbf{v}_n^\mathsf{T}\} = \mathbf{R}$

- recall: Sequential Measurements from One Sensor
- random variable evolution: $\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$
- ullet measurements: $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$, where $\mathsf{E}\{\mathbf{v}_n\mathbf{v}_n^\mathsf{T}\} = \mathbf{R}$
- we have

$$\begin{bmatrix} \mathbf{y}_n \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{C} \\ \mathbf{H} \end{bmatrix} \mathbf{x}_n + \begin{bmatrix} \mathbf{v}_n \\ \mathbf{u} \end{bmatrix}$$
 (27)

$$\hat{\mathbf{x}} = \mathbf{M}\mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{y}_n$$
 , where $\mathbf{M} = \left(\mathbf{R}_{\mathbf{x}_n}^{-1} + \mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{C}\right)^{-1}$

$$\mathbf{P}_{n|n}^{-1}\hat{\mathbf{x}}_{n|n} = \mathbf{P}_{n|n-1}^{-1}\hat{\mathbf{x}}_{n|n-1} + \mathbf{C}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}_{n}$$
 (28)

$$\mathbf{P}_{n|n}^{-1} = \mathbf{P}_{n|n-1}^{-1} + \mathbf{C}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{C}$$
 (29)

- recall: Sequential Measurements from One Sensor
- random variable evolution: $\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{w}_n$
- ullet measurements: $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \mathbf{v}_n$, where $\mathsf{E}\{\mathbf{v}_n\mathbf{v}_n^\mathsf{T}\} = \mathbf{R}$
- we have

$$\begin{bmatrix} \mathbf{y}_n \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{C} \\ \mathbf{H} \end{bmatrix} \mathbf{x}_n + \begin{bmatrix} \mathbf{v}_n \\ \mathbf{u} \end{bmatrix}$$
 (27)

$$\hat{\mathbf{x}} = \mathbf{M}\mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{y}_n$$
 , where $\mathbf{M} = \left(\mathbf{R}_{\mathbf{x}_n}^{-1} + \mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{C}\right)^{-1}$

$$\mathbf{P}_{n|n}^{-1}\hat{\mathbf{x}}_{n|n} = \mathbf{P}_{n|n-1}^{-1}\hat{\mathbf{x}}_{n|n-1} + \mathbf{C}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}_{n}$$
 (28)

$$\mathbf{P}_{n|n}^{-1} = \mathbf{P}_{n|n-1}^{-1} + \mathbf{C}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{C}$$
 (29)

• the requirements from individual sensors are derived by the equations above

Proposition 4: Consider a random variable \mathbf{x}_n evolving in time as $\mathbf{x}_n = \mathbf{A}\mathbf{x}_{n-1} + \mathbf{w}_{n-1}$ being observed by K sensors in every time step n. Suppose they generate measurements of the form $\mathbf{y}_{n,k} = \mathbf{C}_k \mathbf{x}_n + \mathbf{v}_{n,k}$. Then the global error covariance matrix and the estimate are given in terms of the local covariances and estimates by

$$\mathbf{P}_{n|n}^{-1} = \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right)$$

$$\mathbf{P}_{n|n}^{-1}\hat{\mathbf{x}}_{n|n} = \mathbf{P}_{n|n-1}^{-1}\hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1}\hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1}\hat{\mathbf{x}}_{n,k|n-1} \right)$$

Proof: Note that overall linear system is given by

$$\begin{bmatrix} \mathbf{y}_{n,1} \\ \vdots \\ \mathbf{y}_{n,K} \\ \mathbf{z}_{1} \\ \vdots \\ \mathbf{z}_{K} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{1} \\ \vdots \\ \mathbf{C}_{K} \\ \mathbf{H}_{1} \\ \vdots \\ \mathbf{H}_{K} \end{bmatrix} \mathbf{x}_{n} + \begin{bmatrix} \mathbf{v}_{n,1} \\ \vdots \\ \mathbf{v}_{n,K} \\ \mathbf{u}_{1} \\ \vdots \\ \mathbf{u}_{K} \end{bmatrix} \triangleq \begin{bmatrix} \mathbf{y}_{n} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{C} \\ \mathbf{H} \end{bmatrix} \mathbf{x}_{n} + \begin{bmatrix} \mathbf{v}_{n} \\ \mathbf{u} \end{bmatrix}$$

Lets now simplify
$$\mathbf{C}^\mathsf{T}\mathbf{R}^{-1}\mathbf{y}_n$$

Lets now simplify
$$\mathbf{C}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}_{n}$$

$$\mathbf{C}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}_{n} = \begin{bmatrix} \mathbf{C}_{1}^{\mathsf{T}} \cdots \mathbf{C}_{K}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{R}_{1}^{-1} & 0 & \cdots & 0 \\ 0 & \mathbf{R}_{2}^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{R}_{K}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{n,1} \\ \vdots \\ \mathbf{y}_{n,K} \end{bmatrix}$$

$$= \sum_{k=1}^{K} \mathbf{C}_{k}^{\mathsf{T}} \mathbf{R}_{k}^{-1} \mathbf{y}_{n,k}$$

$$= \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right)$$
(30)

$$\mathbf{C}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{C} = \sum_{k=1}^{K} \mathbf{C}_{k}^{\mathsf{T}}\mathbf{R}_{k}^{-1}\mathbf{C}_{k}$$
$$= \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right)$$
(31)

recap:

$$\mathbf{P}_{n|n}^{-1} = \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right)$$

$$\mathbf{P}_{n|n}^{-1}\hat{\mathbf{x}}_{n|n} = \mathbf{P}_{n|n-1}^{-1}\hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1}\hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1}\hat{\mathbf{x}}_{n,k|n-1} \right)$$

Based on the result above o **two architectures** for dynamic sensor fusion

- method 1: more computation at the fusion center, less communication overhead
- method 2: less computation at the fusion center, more communication overhead

Dynamic Sensor Fusion Distributed Kalman Filtering (method 1)

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 \mathbf{x}_3

 \mathbf{x}_2

 \mathbf{x}_1

 \mathbf{x}_0

sensor 1 measurements

what we want to estimate

sensor 2 measurements

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 \mathbf{x}_3

 \mathbf{x}_2

 \mathbf{x}_1

 \mathbf{x}_0

sensor 1 measurements

what we want to estimate

sensor 2 measurements

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $oxed{y_{0,2} \ y_{1,2} \ y_{2,2} \ y_{3,2}}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $oxed{y_{0,2} \ y_{1,2} \ y_{2,2} \ y_{3,2}}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

$$\mathbf{P}_{0,\mathbf{1}|0}^{-1},\hat{\mathbf{x}}_{0,\mathbf{1}|0}$$

$$\mathbf{P}_{0,\mathbf{2}|0}^{-1},\hat{\mathbf{x}}_{0,\mathbf{2}|0}$$

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $oxed{y_{0,2} | y_{1,2} | y_{2,2} | y_{3,2}}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\longrightarrow \mathbf{P}_{1,1|0} = \mathbf{A}\mathbf{P}_{0,1|0}\mathbf{A}^{\mathsf{T}} + \mathbf{Q}$$

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c|c} \mathbf{P}_{0,1|0}^{-1}, \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{0,2|0}^{-1}, \hat{\mathbf{x}}_{0,2|0} \end{array} \mid -$$

$$\rightarrow \mathbf{P}_{1,1|0} = \mathbf{A} \mathbf{P}_{0,1|0} \mathbf{A}^{\mathsf{T}} + \mathbf{Q}$$

$$\hat{\mathbf{x}}_{1,1|0} = \mathbf{A} \hat{\mathbf{x}}_{0,1|0}$$

say n=0... what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $\mathbf{y}_{0,2} \mid \mathbf{y}_{1,2} \mid \mathbf{y}_{2,2} \mid \mathbf{y}_{3,2}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c|c} \mathbf{P}_{0,1|0}^{-1}, \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{0,2|0}^{-1}, \hat{\mathbf{x}}_{0,2|0} \end{array} \mid -$$

$$\begin{aligned} \mathbf{P}_{1,1|0} &= \mathbf{A} \mathbf{P}_{0,1|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,1|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{1,2|0} &= \mathbf{A} \mathbf{P}_{0,2|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \end{aligned}$$

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c|c} \mathbf{P}_{0,1|0}^{-1}, \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{0,2|0}^{-1}, \hat{\mathbf{x}}_{0,2|0} \end{array} \mid \blacksquare$$

$$\begin{aligned} \mathbf{P}_{1,1|0} &= \mathbf{A} \mathbf{P}_{0,1|0} \mathbf{A}^T + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,1|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{1,2|0} &= \mathbf{A} \mathbf{P}_{0,2|0} \mathbf{A}^T + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,2|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,2|0} \end{aligned}$$

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c} \mathbf{P}_{0,1|0}^{-1}, \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{0,2|0}^{-1}, \hat{\mathbf{x}}_{0,2|0} \end{array} | = \vdots$$

$$\begin{split} \mathbf{P}_{1,1|0} &= \mathbf{A} \mathbf{P}_{0,1|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,1|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{1,2|0} &= \mathbf{A} \mathbf{P}_{0,2|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,2|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,2|0} \end{split}$$

$$\mathbf{P}_{1|0} = \mathbf{A}\mathbf{P}_{0|0}\mathbf{A}^\mathsf{T} + \mathbf{Q}$$

say n = 0....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $\mathbf{y}_{0,2} \mid \mathbf{y}_{1,2} \mid \mathbf{y}_{2,2} \mid \mathbf{y}_{3,2}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{split} \mathbf{P}_{1,1|0} &= \mathbf{A} \mathbf{P}_{0,1|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,1|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{1,2|0} &= \mathbf{A} \mathbf{P}_{0,2|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,2|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,2|0} \\ \mathbf{P}_{1|0} &= \mathbf{A} \mathbf{P}_{0|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \end{split}$$

$$\mathbf{P}_{1|0} = \mathbf{A}\mathbf{P}_{0|0}\mathbf{A}^{\mathsf{T}} + \mathbf{C}$$
$$\hat{\mathbf{x}}_{1|0} = \mathbf{A}\hat{\mathbf{x}}_{0|0}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

$$\mathbf{P}_{0,1|0}^{-1}, \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{0,2|0}^{-1}, \hat{\mathbf{x}}_{0,2|0}$$

$$\begin{split} \mathbf{P}_{1,1|0} &= \mathbf{A} \mathbf{P}_{0,1|0} \mathbf{A}^T + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,1|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,1|0} \\ \mathbf{P}_{1,2|0} &= \mathbf{A} \mathbf{P}_{0,2|0} \mathbf{A}^T + \mathbf{Q} \\ \hat{\mathbf{x}}_{1,2|0} &= \mathbf{A} \hat{\mathbf{x}}_{0,2|0} \end{split}$$

$$\begin{split} \mathbf{P}_{1|0} &= \mathbf{A} \mathbf{P}_{0|0} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{1|0} &= \mathbf{A} \hat{\mathbf{x}}_{0|0} \end{split}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

$$\mathbf{P}_{1,\frac{1}{1}|1}^{-1}, \hat{\mathbf{x}}_{1,\frac{1}{1}|1}$$

$$\mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $oxed{y_{0,2} \ y_{1,2} \ y_{2,2} \ y_{3,2}}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

$$\begin{array}{c} \mathbf{P}_{1,1|1}^{-1}, \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1} \end{array} \longmapsto \\ \\ -$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c|c} \mathbf{P}_{1,1|1}^{-1},\hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1},\hat{\mathbf{x}}_{1,2|1} \end{array} \models$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

 $\mathbf{y}_{0,2} \mid \mathbf{y}_{1,2} \mid \mathbf{y}_{2,2} \mid \mathbf{y}_{3,2}$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c|c} \mathbf{P}_{1,1|1}^{-1}, \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1} \end{array}$$

$$\mathbf{P}_{2,1|1} = \mathbf{A}\mathbf{P}_{1,1|1}\mathbf{A}^{\mathsf{T}} + \mathbf{Q}$$

 $\hat{\mathbf{x}}_{2,1|1} = \mathbf{A}\hat{\mathbf{x}}_{1,1|1}$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c|c} \mathbf{P}_{1,1|1}^{-1}, \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1} \end{array}$$

$$\begin{aligned} \mathbf{P}_{2,1|1} &= \mathbf{A} \mathbf{P}_{1,1|1} \mathbf{A}^{\mathsf{T}} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,1|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{2,2|1} &= \mathbf{A} \mathbf{P}_{1,2|1} \mathbf{A}^{\mathsf{T}} + \mathbf{Q} \end{aligned}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c} \mathbf{P}_{1,1|1}^{-1}, \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1} \end{array} \models \\ \\ \\ \end{array}$$

$$\begin{aligned} \mathbf{P}_{2,1|1} &= \mathbf{A} \mathbf{P}_{1,1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,1|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{2,2|1} &= \mathbf{A} \mathbf{P}_{1,2|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,2|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,2|1} \end{aligned}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{array}{c} \mathbf{P}_{1,1|1}^{-1}, \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1} \end{array} \mid \blacksquare$$

$$\begin{aligned} \mathbf{P}_{2,1|1} &= \mathbf{A} \mathbf{P}_{1,1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,1|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{2,2|1} &= \mathbf{A} \mathbf{P}_{1,2|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,2|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,2|1} \\ \mathbf{P}_{2|1} &= \mathbf{A} \mathbf{P}_{1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \end{aligned}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

$$\mathbf{P}_{1,1|1}^{-1}, \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{1,2|1}^{-1}, \hat{\mathbf{x}}_{1,2|1}$$

$$\begin{split} \mathbf{P}_{2,1|1} &= \mathbf{A} \mathbf{P}_{1,1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,1|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,1|1} \\ \mathbf{P}_{2,2|1} &= \mathbf{A} \mathbf{P}_{1,2|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2,2|1} &= \mathbf{A} \hat{\mathbf{x}}_{1,2|1} \\ \mathbf{P}_{2|1} &= \mathbf{A} \mathbf{P}_{1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2|1} &= \mathbf{A} \hat{\mathbf{x}}_{1|1} \end{split}$$

say n = 1....what will happen?

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

sensor 1 / sensor 2

$$\begin{split} \mathbf{P}_{2,1|1} &= \mathbf{A} \mathbf{P}_{1,1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ &\hat{\mathbf{x}}_{2,1|1} = \mathbf{A} \hat{\mathbf{x}}_{1,1|1} \\ &\mathbf{P}_{2,2|1} = \mathbf{A} \mathbf{P}_{1,2|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ &\hat{\mathbf{x}}_{2,2|1} = \mathbf{A} \hat{\mathbf{x}}_{1,2|1} \end{split}$$

$$\begin{aligned} \mathbf{P}_{2|1} &= \mathbf{A} \mathbf{P}_{1|1} \mathbf{A}^\mathsf{T} + \mathbf{Q} \\ \hat{\mathbf{x}}_{2|1} &= \mathbf{A} \hat{\mathbf{x}}_{1|1} \end{aligned}$$

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

$$\begin{split} \mathbf{P}_{n|n}^{-1} &= \mathbf{P}_{n|n-1}^{-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} - \mathbf{P}_{n,k|n-1}^{-1} \right) \\ \mathbf{P}_{n|n}^{-1} \hat{\mathbf{x}}_{n|n} &= \mathbf{P}_{n|n-1}^{-1} \hat{\mathbf{x}}_{n|n-1} + \sum_{k=1}^{K} \left(\mathbf{P}_{n,k|n}^{-1} \hat{\mathbf{x}}_{n,k|n} - \mathbf{P}_{n,k|n-1}^{-1} \hat{\mathbf{x}}_{n,k|n-1} \right) \end{split}$$

sensor 1 measurements

what we want to estimate

sensor 2 measurements

key idea:

- the term $P_{n|n-1}^{-1}\hat{\mathbf{x}}_{n|n-1}$ can be written in terms of contributions from individual sensors
- the term $P_{n|n-1}^{-1}$ can be written in terms of contributions from individual sensors
- try it...

Outline

- Star Topology
- General Topology
- One Sensor Case
 - Model of the measurements for one sensor
 - Model of the Estimator
 - Mean Squared Error (MSE) to Chose L
 - LMMSE Estimate
- Combining Estimators from Many Sensors (Star Topology)
 - Static Sensor Fusion
- Sequential Measurements from One Sensor
- Sequential Measurements from Many Sensors (Star Topology)
 - Dynamic Sensor Fusion, Centralized Setup
 - Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
 - Dynamic Sensor Fusion, Distributed Kalman Filtering
- Combining Estimators from Many Sensors (Arbitrary Topology)
 - Static Sensor Fusion with Limited Communication Ranges

Network with Arbitrary Topology

Figure: Network with a Arbitrary Topology: Solid lines indicating that there is message communication between nodes. In this network, there is no node acting as fusion center.

Network with Arbitrary Topology

- star topology: essentially a **two step procedure**
 - all the nodes transmit local estimates to a central node (called fusion center)
 - central node calculates and transmits the weighted sum of the local estimates back
- final outcome is a weighted average
- ⇒ generalize the approach to an **arbitrary graph**
- this approaches are along the lines of average consensus algorithms
- no fusion center

example scenario:

- \bullet K nodes, each measure a scalar value x, measurements are noisy
- nodes are connected according to an arbitrary graph
- each node wants to calculate the average of all the scalars

$$y_k = x + v_k , k = 1, \dots, K$$
 (32)

example scenario:

- \bullet K nodes, each measure a scalar value x, measurements are noisy
- nodes are connected according to an arbitrary graph
- each node wants to calculate the average of all the scalars

$$y_k = x + v_k , k = 1, \dots, K$$
 (32)

important: provided the noise is iid Gaussian then the maximum likelihood (ML) estimate \hat{x} of x is given by the average of all y_k values, i.e.,

$$\hat{x} = (1/K) \sum_{k=1}^{K} y_k = (1/K) \mathbf{1}^\mathsf{T} \mathbf{y}$$
 (33)

example scenario:

- \bullet K nodes, each measure a scalar value x, measurements are noisy
- nodes are connected according to an arbitrary graph
- each node wants to calculate the average of all the scalars

$$y_k = x + v_k , k = 1, \dots, K$$
 (32)

important: provided the noise is iid Gaussian then the maximum likelihood (ML) estimate \hat{x} of x is given by the average of all y_k values, i.e.,

$$\hat{x} = (1/K) \sum_{k=1}^{K} y_k = (1/K) \mathbf{1}^{\mathsf{T}} \mathbf{y}$$
 (33)

question: how to obtain \hat{x} just by coordinating with **adjacent neighbors** (no central fusion center) ?

one way:

- iterative method, iterations $n = 0, 1, 2, \dots$
- each sensor k, during iteration 0, set $x_{0,k} = y_k$
- ullet each sensor k implements the dynamical system

$$x_{n+1,k} = x_{n,k} + h \sum_{j \in \mathcal{N}_k} (x_{n,j} - x_{n,k}) ,$$
 (34)

where \mathcal{N}_k is the adjacent sensors of sensor k

• just local communications

one way:

- iterative method, iterations $n = 0, 1, 2, \dots$
- each sensor k, during iteration 0, set $x_{0,k} = y_k$
- \bullet each sensor k implements the dynamical system

$$x_{n+1,k} = x_{n,k} + h \sum_{j \in \mathcal{N}_k} (x_{n,j} - x_{n,k})$$
, (34)

where \mathcal{N}_k is the adjacent sensors of sensor k

- just local communications
- compact form

$$\mathbf{x}_{n+1} = (\mathbf{I} - h\mathbf{L})\mathbf{x}_n , n = 0, 1, 2, \dots ,$$
 (35)

where L is the Graph Laplacian matrix ?

question: when $n \to \infty$ do we get $(\mathbf{x}_{n+1})_k = \hat{x}$ for all $k = 1, \dots, K$

question: when $n \to \infty$ do we get $(\mathbf{x}_{n+1})_k = \hat{x}$ for all $k = 1, \dots, K$

answer: YES

if and only if

$$(\mathbf{I} - h\mathbf{L})\mathbf{1} = \mathbf{1}, \quad \mathbf{1}^{\mathsf{T}}(\mathbf{I} - h\mathbf{L}) = \mathbf{1}^{\mathsf{T}}, \quad \rho\left((\mathbf{I} - h\mathbf{L}) - \mathbf{1}\mathbf{1}^{\mathsf{T}}\right) < 1$$
 (36)

question: when $n \to \infty$ do we get $(\mathbf{x}_{n+1})_k = \hat{x}$ for all $k = 1, \dots, K$

answer: YES

if and only if

$$(\mathbf{I} - h\mathbf{L})\mathbf{1} = \mathbf{1}, \quad \mathbf{1}^{\mathsf{T}}(\mathbf{I} - h\mathbf{L}) = \mathbf{1}^{\mathsf{T}}, \quad \rho\left((\mathbf{I} - h\mathbf{L}) - \mathbf{1}\mathbf{1}^{\mathsf{T}}\right) < 1$$
 (36)

- ullet condition 1 is true: each row sum of ${f L}$ is 0
- condition 2 is true: each column sum of L is 0.
- condition 3 is true: for small enough h

question: when $n \to \infty$ do we get $(\mathbf{x}_{n+1})_k = \hat{x}$ for all $k = 1, \dots, K$

answer: YES

if and only if

$$(\mathbf{I} - h\mathbf{L})\mathbf{1} = \mathbf{1}, \quad \mathbf{1}^{\mathsf{T}}(\mathbf{I} - h\mathbf{L}) = \mathbf{1}^{\mathsf{T}}, \quad \rho\left((\mathbf{I} - h\mathbf{L}) - \mathbf{1}\mathbf{1}^{\mathsf{T}}\right) < 1$$
 (36)

- condition 1 is true: each row sum of L is 0
- condition 2 is true: each column sum of L is 0.
- condition 3 is true: for small enough h

the idea extends in a straightforward manner to more general models such as

$$x_{n+1,k} = x_{n,k} + h\mathbf{W}_k^{-1} \sum_{i \in \mathcal{N}_k} (x_{n,i} - x_{n,k}) ,$$
 (37)