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Today’s Lecture

Process Controller 

Today we study how to perform estimation from noisy 
measurements of the sensors 
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Motivation

• plays a central role in many networked applications

• accurately predicts the parameters of a phenomenon

• communication: position, navigation

• monitoring: pollutant, earthquake magnitude

• surveillance: crowd density, attitude
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Today’s Learning Goals

• overview on some of the fundamental aspects of distributed
estimation over networks
• star topology
• general topology
• LMMSE estimate
• static sensor fusion

• advanced topics
• sequential measurements from one sensor
• sequential measurements from many sensors (dynamic sensor fusion)
• dynamic sensor fusion, distributed Kalman filtering
• static sensor fusion with limited communication range
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Outline

• Star Topology

• General Topology

• One Sensor Case

• Combining Estimators from Many Sensors (Star Topology)

• Sequential Measurements from One Sensor

• Sequential Measurements from Many Sensors (Star Topology)

• Combining Estimators from Many Sensors (Arbitrary Topology)
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Topology 1: Star Topology
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Figure: Network with a Star Topology: Solid lines indicating that there is message communication between nodes. In this
network, Node 9 can receive information from all other nodes. Thus Node 9 is the central unit.

• the phenomenon is observed by a number of sensors organized as a
star

• multiple sensors make measurements

• measurements are transmitted to a fusion center (no messages losses
are assumed)
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Topology 2: General Topology
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Figure: Network with a Arbitrary Topology: Solid lines indicating that there is message communication between nodes. In this
network, there is no node acting as fusion center.

• the phenomenon is observed by a number of sensors organized
arbitrarily

• multiple sensors make measurements

• measurements are not transmitted to a fusion center
- indeed, no fusion center. every node is a sort of local fusion center
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Model of the measurements for one sensor

• to start with, we consider only one sensor

• linear measurements (i.e., measurements and the parameters are
related linearly) with noise or measurement errors

y = Hx+ v (1)

• y: sensor measurement(s)

• H: a known matrix

• x: what we want to estimate

• v: unknown noise or measurement error

• goal: how to estimate x out of the measurement y ?
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Model of the Estimator

linear estimator, i.e.,
x̂(L) = Ly

• y: sensor measurement(s)

• x̂(L): estimator of x, dependent on L

• we need to compute a good estimate x̂(·) ⇒ what matrix L to be
used ?

• performance criterion for computing L ?
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Mean Squared Error (MSE) to Chose L

a good estimate x̂(·) is found by considering the MSE, which is given by
the trace of error covariance matrix C of the estimator

• in particular, for fixed L, MSE is defined as

MSE(L) = Tr {C(L)}

= Tr
{

E
{
(x̂(L)− x) (x̂(L)− x)T

}}
=
∑N

i=1 E(x̂i(L)− xi)
2

• let L? = argminLMSE(L)

• then, x̂ = L?y is called the linear minimum MSE (LMMSE)
estimate of x
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LMMSE Estimate

Proposition 1: Consider a random variable x being observed by a sensor
that generate measurements of the form (1), i.e., y = Hx+ v. Then
LMMSE estimator of x given y is given by

x̂ = PHTR−1v︸ ︷︷ ︸
L?

y , (2)

where

P =
(
R−1x +HTR−1v H

)−1
,

Rx is the covariance matrix of x, and Rv is the noise covariance matrix.

• we need to show that L? = PHTR−1v
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LMMSE Estimate Proof

advanced topic, no requested to the exam

Proof:

preliminaries:

(1) A+B � B when A � 0

(2) A � B⇒ Tr(L) ≥ Tr(B)

(3) (A+BC)−1 = A−1 −A−1B
(
I+CA−1B

)−1
CA−1
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LMMSE Estimate Proof
Proof:

C(L) = E
{
(x̂(L)− x) (x̂(L)− x)T

}
= E

{
(Ly − x) (Ly − x)T

}
= E

{
(LH− I)xxT (LH− I)T + LvvTLT

}
= (LH− I)Rx (LH− I)T + LRvL

T

= L
(
HRxH

T +Rv

)
LT − LHRx −RxH

TLT +Rx

=

(
L−RxH

T
(
HRxH

T+Rv

)−1
)(

HRxH
T+Rv

)(
L−RxH

T
(
HRxH

T+Rv

)−1
)T

+Rx −RxH
T
(
HRxH

T+Rv

)−1
HRx

� Rx −RxH
T
(
HRxH

T+Rv

)−1
HRx (3)

the lower bound is achieved when

L = RxH
T
(
HRxH

T+Rv

)−1

= RxH
T
(
R−1

v −R−1
v H

(
I+RxH

TR−1
v H

)−1
RxH

TR−1
v

)
=

(
I−RxH

TR−1
v H

(
I+RxH

TR−1
v H

)−1
)
RxH

TR−1
v

=
(
I+RxH

TR−1
v H

)−1
RxH

TR−1
v =

(
R−1

x +HTR−1
v H

)−1
HTR−1

v = PHTR−1
v �
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LMMSE Estimate

recap:

Consider the linear system of measurements given in (1), i.e., y = Hx+v.
Let x̂ denote the LMMSE estimator of x given y. Then we have

P−1x̂ = HTR−1v y , (4)

where

P =
(
R−1x +HTR−1v H

)−1
= error covariance of x̂.

• relation (4) has been derived for the case of one sensor

• in the case of multiple sensors, relation (4) suggests the possibility of
combining local estimates directly

• no need to sending all the measurements to a central data processing

• this is called static sensor fusion

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 18 / 52



LMMSE Estimate

recap:

Consider the linear system of measurements given in (1), i.e., y = Hx+v.
Let x̂ denote the LMMSE estimator of x given y. Then we have

P−1x̂ = HTR−1v y , (4)

where

P =
(
R−1x +HTR−1v H

)−1
= error covariance of x̂.

• relation (4) has been derived for the case of one sensor

• in the case of multiple sensors, relation (4) suggests the possibility of
combining local estimates directly

• no need to sending all the measurements to a central data processing

• this is called static sensor fusion

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 18 / 52



LMMSE Estimate

recap:

Consider the linear system of measurements given in (1), i.e., y = Hx+v.
Let x̂ denote the LMMSE estimator of x given y. Then we have

P−1x̂ = HTR−1v y , (4)

where

P =
(
R−1x +HTR−1v H

)−1
= error covariance of x̂.

• relation (4) has been derived for the case of one sensor

• in the case of multiple sensors, relation (4) suggests the possibility of
combining local estimates directly

• no need to sending all the measurements to a central data processing

• this is called static sensor fusion

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 18 / 52



LMMSE Estimate

recap:

Consider the linear system of measurements given in (1), i.e., y = Hx+v.
Let x̂ denote the LMMSE estimator of x given y. Then we have

P−1x̂ = HTR−1v y , (4)

where

P =
(
R−1x +HTR−1v H

)−1
= error covariance of x̂.

• relation (4) has been derived for the case of one sensor

• in the case of multiple sensors, relation (4) suggests the possibility of
combining local estimates directly

• no need to sending all the measurements to a central data processing

• this is called static sensor fusion

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 18 / 52



Outline

• Star Topology

• General Topology

• One Sensor Case

• Model of the measurements for one sensor
• Model of the Estimator
• Mean Squared Error (MSE) to Chose L
• LMMSE Estimate

• Combining Estimators from Many Sensors (Star Topology)

• Static Sensor Fusion

• Sequential Measurements from One Sensor

• Sequential Measurements from Many Sensors (Star Topology)

• Dynamic Sensor Fusion, Centralized Setup
• Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
• Dynamic Sensor Fusion, Distributed Kalman Filtering

• Combining Estimators from Many Sensors (Arbitrary Topology)

• Static Sensor Fusion with Limited Communication Ranges

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 19 / 52



Static Sensor Fusion, Star Topology
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Figure: Network with a Star Topology: Solid lines indicating that there is message communication between nodes. In this
network, Node 9 can receive information from all other nodes. Thus Node 9 is the central unit.

• now we move to a case of many sensors in a star topology
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Static Sensor Fusion, Star Topology

Proposition 2: Consider a random variable x being observed by K
sensors that generate measurements of the form

yk = Hkx+ vk, k = 1, . . . ,K . (5)

• yk: kth sensor measurement(s)
• Hk: a matrix known to the kth sensor
• x: what we want to estimate
• vk: noise or measurement error at kth sensor, vk and vj (j 6= k) are uncorelated

Let x̂ denote the LMMSE estimator of x given y = (y1, . . . ,yK), as obtained at
the fusion center. Then

P−1x̂ =
∑K

k=1 P
−1
k x̂k , where (6)

where P is the estimate error covariance corresponding to x̂ and Pk is the error
covariance corresponding to x̂k. Furthermore,

P−1 = −(K − 1)R−1x +
∑K

k=1 P
−1
k , (7)

Rx is the covariance matrix of x = (x1, . . . ,xK).

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 21 / 52



Static Sensor Fusion, Star Topology

Proposition 2: Consider a random variable x being observed by K
sensors that generate measurements of the form

yk = Hkx+ vk, k = 1, . . . ,K . (5)

• yk: kth sensor measurement(s)
• Hk: a matrix known to the kth sensor
• x: what we want to estimate
• vk: noise or measurement error at kth sensor, vk and vj (j 6= k) are uncorelated

Let x̂ denote the LMMSE estimator of x given y = (y1, . . . ,yK), as obtained at
the fusion center. Then

P−1x̂ =
∑K

k=1 P
−1
k x̂k , where (6)

where P is the estimate error covariance corresponding to x̂ and Pk is the error
covariance corresponding to x̂k.

Furthermore,

P−1 = −(K − 1)R−1x +
∑K

k=1 P
−1
k , (7)

Rx is the covariance matrix of x = (x1, . . . ,xK).

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 21 / 52



Static Sensor Fusion, Star Topology

Proposition 2: Consider a random variable x being observed by K
sensors that generate measurements of the form

yk = Hkx+ vk, k = 1, . . . ,K . (5)

• yk: kth sensor measurement(s)
• Hk: a matrix known to the kth sensor
• x: what we want to estimate
• vk: noise or measurement error at kth sensor, vk and vj (j 6= k) are uncorelated

Let x̂ denote the LMMSE estimator of x given y = (y1, . . . ,yK), as obtained at
the fusion center. Then

P−1x̂ =
∑K

k=1 P
−1
k x̂k , where (6)

where P is the estimate error covariance corresponding to x̂ and Pk is the error
covariance corresponding to x̂k. Furthermore,

P−1 = −(K − 1)R−1x +
∑K

k=1 P
−1
k , (7)

Rx is the covariance matrix of x = (x1, . . . ,xK).

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 21 / 52



Proof of Proposition 2
Proof: Note that overall linear system is given byy1

...
yK


︸ ︷︷ ︸

y

=

H1

...
HK


︸ ︷︷ ︸

H

x+

v1

...
vK


︸ ︷︷ ︸

v

(8)

Now use Proposition 1

P−1x̂ = HTR−1
v y =

[
HT

1 · · ·HT
K

]

R−1

v1
0 · · · 0

0 R−1
v2

· · · 0
...

...
. . .

...

0 0 · · · R−1
vK


y1

...
yK

 (9)

=
∑K

k=1 H
T
k R−1

vk
yk (10)

=
∑K

k=1 P
−1
k x̂k (11)

Moreover, from Proposition 1

P−1 = R−1
x +HTR−1

v H︸ ︷︷ ︸ (12)

= R−1
x +

∑K
k=1 H

T
k R−1

vk
Hk︸ ︷︷ ︸ (13)

= R−1
x +

∑K
k=1

(
P−1

k −R−1
x

)
= −(K − 1)R−1

x +
∑K

k=1 P
−1
k , (14)
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Static Sensor Fusion from Multiple Sensors

• by Proposition 2, complexity of the fusion center goes down
considerably

• some computational load is delegated to the distributed sensors

• each estimate is weighted by the inverse of the error covariance
matrix

• the higher the confidence we have in a particular sensor, the higher
the trust we place in it.
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Sequential Measurements from One Sensor

Proposition 3: Consider a phenomenon x evolving in time (indexed by n)
according to

xn+1 = Axn +wn

Every time step sensor generates a measurement of the form

yn = Cxn + vn

• wn: white zero mean Gaussian with covariance matrix E{wnwT
n } = Q

• vn: white zero mean Gaussian with covariance matrix E{vnvTn } = R
• A: a known nonsingular matrix
• C: a known matrix

Then we have x̂n|n−1 = Ax̂n−1|n−1 (15)

Pn|n−1 = APn−1|n−1A
T +Q (16)

• x̂n−1|n−1: estimate of xn−1 given z = (y0, . . . ,yn−1)• Pn−1|n−1: corresponding error covariance matrix
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Proof of Proposition 3
x̂n−1|n−1: estimate of xn−1 given z = (y0, . . . ,yn−1) ?

yn−1 = Cxn−1 + vn−1 (17)

yn−2 = Cxn−2 + vn−2 = C(A−1(xn−1 −wn−2)) + vn−2 (18)

= CA−1xn−1 +
(
vn−2 −CA−1wn−2

)
(19)

...

y0 = CA−(n−1)xn−1 +
(
v0 −CA−(n−1)wn−2 − · · · −CA−1w0

)
(20)

i.e., the overall linear system is given byyn−1

...
y0


︸ ︷︷ ︸

z

=

 C
...

CA−(n−1)


︸ ︷︷ ︸

H

xn−1 +

 vn−1

...
v0 − · · · −CA−1w0


︸ ︷︷ ︸

u

(21)

From Proposition 1
P−1

n−1|n−1
x̂n−1|n−1 = HTR−1

u z ,where

Pn−1|n−1 =
(
R−1

xn−1
+HTR−1

u H
)−1
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Proof of Proposition 3

Question: how to show that x̂n|n−1 = Ax̂n−1|n−1 ?

Answer:
use a well known result: MMSE estimate x̂ of a random variable x given a
random variable y is E{x|y}.

x̂n|n−1 = E {xn|(y0, . . . ,yn−1)}
= E {Axn−1 +wn−1|z)}
= AE {xn−1|z}
= Ax̂n−1|n−1
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Proof of Proposition 3

Question: how to show that Pn|n−1 = APn−1|n−1A
T +Q ?

Answer:
by the definition of error covariance, we already have:

Pn−1|n−1 = E{(x̂n−1|n−1 − xn−1)(x̂n−1|n−1 − xn−1)
T} (22)

Pn|n−1 = E{(x̂n|n−1 − xn)(x̂n|n−1 − xn)
T}

= E{(Ax̂n−1|n−1 −Axn−1 −wn−1)(Ax̂n−1|n−1 −Axn−1 −wn−1)
T}

= E{A(x̂n−1|n−1 − xn−1)(x̂n−1|n−1 − xn−1)
TAT +wn−1w

T
n−1}

= APn−1|n−1A
T +Q
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Sequential Measurements from One Sensor

Question: x̂n|n, the MMSE estimate of xn given (y0, . . . ,yn−1,yn) = (z,yn)

Answer: apply Proposition 2 (Static Sensor Fusion) in a straightforward manner

we already know x̂n|n−1, i.e., the estimate of xn given z
we already know Pn|n−1, the corresponding error covariance matrix

we need the estimate of xn given yn, denote it by x̂
we need the corresponding error covariance matrix, denote it by M
because yn = Cxn + vn, from Proposition 1, we have

x̂ = MCTR−1yn ,where M =
(
R−1xn

+CTR−1C
)−1

from Proposition 2

P−1n|nx̂n|n = P−1n|n−1x̂n|n−1 +M−1x̂ , where (23)

P−1n|n = −R−1xn
+P−1n|n−1 +M−1 (24)
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Sequential Measurements from One Sensor

• time and measurement update steps of the Kalman filter

• Kalman filter can be seen to be a combination of estimators

• optimality of the Kalman filter in the minimum mean squared
sense
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Outline

• Star Topology

• General Topology

• One Sensor Case

• Model of the measurements for one sensor
• Model of the Estimator
• Mean Squared Error (MSE) to Chose L
• LMMSE Estimate

• Combining Estimators from Many Sensors (Star Topology)

• Static Sensor Fusion

• Sequential Measurements from One Sensor

• Sequential Measurements from Many Sensors (Star Topology)

• Dynamic Sensor Fusion, Centralized Setup
• Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
• Dynamic Sensor Fusion, Distributed Kalman Filtering

• Combining Estimators from Many Sensors (Arbitrary Topology)

• Static Sensor Fusion with Limited Communication Ranges
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Dynamic Sensor Fusion

Consider a phenomenon x evolving in time (indexed by n) according to
the law

xn+1 = Axn +wn

Every time step, sensor k generates a measurement of the form

yn,k = Ckxn + vn,k

• multiple sensors that generate measurements about the random variable
that is evolving in time

• Question: how to fuse data from all the sensors for an estimate of the
state xn at time step n
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Dynamic Sensor Fusion, Centralized Setup

• at every time step n, all the sensors transmit their measurements
yn,k to a central node

• the central node implements a fusion mechanism

• however, there are two reasons why this may not be the preferred
implementation

(1) number of sensors increases ⇒ computational effort required at the
central node increases (bear some of the computational burden at sensors)

(2) the sensors may not be able to transmit at every time step (transmit local
processed information rather that raw measurements)
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Dynamic Sensor Fusion, Centralized Setup
(Transmitting Local Estimates)

• assume that the sensors can transmit at every time step

• reducing the computational burden at the central node ?
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Dynamic Sensor Fusion, Centralized Setup
(Transmitting Local Estimates)

let yk = (y0,k,y1,k, . . . ,yn,k) denote the measurements from sensor k that is
used to estimate xn

potential method 1

the overall linear system is given by
yn,k

yn−1,k

...
y0,k


︸ ︷︷ ︸

yk

=


Ck

CkA
−1

...
CkA

−n


︸ ︷︷ ︸

Hk

xn +


vn,k

vn−1,k −CkA
−1wn−1

...
v0,k − · · · −CkA

−1w0


︸ ︷︷ ︸

vk

(25)

• process noise wn appears in the noise ⇒ the measurement noises vk are not
independent as desired

• vk are not independent ⇒ the noise is correlated

• ⇒ Proposition 2 does not apply for combining local estimates
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Dynamic Sensor Fusion, Centralized Setup
(Transmitting Local Estimates)

let yk = (y0,k,y1,k, . . . ,yn,k) denote the measurements from sensor k that is
used to estimate xn

potential method 2: estimate of x0 known ⇒ estimate of xn known

the overall linear system is given by


yn,k

yn−1,k

...
y0,k


︸ ︷︷ ︸

yk

=


CkA

n CkA
n−1 · · · Ck

CkA
n−1 · · · Ck 0

CkA
n−2 · · · 0 0
...

...
. . . 0

Ck 0 · · · 0


︸ ︷︷ ︸

Hk


x0

w0

...
wn−1

+


vn,k

vn−1,k

...
v0,k


︸ ︷︷ ︸

vk

(26)

• the measurement noises vk are independent as desired

• ⇒ Proposition 2 does apply for combining local estimates

• vectors transmitted from sensors are increasing in dimension as the time step n increases.
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Dynamic Sensor Fusion, Centralized Setup
(Drawbacks)

• practically, it is not feasible to combine local estimates from
method 2 to obtain the global estimate

• i.e., lots of communication overhead

• if there is no process noise, then the method 1 will work

• however, in general it is not possible
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• recall: Sequential Measurements from One Sensor

• random variable evolution: xn+1 = Axn +wn

• measurements: yn = Cxn + vn, where E{vnv
T
n } = R

• we have [
yn

z

]
=

[
C
H

]
xn +

[
vn

u

]
(27)

x̂ = MCTR−1yn ,where M =
(
R−1xn

+CTR−1C
)−1

P−1n|nx̂n|n = P−1n|n−1x̂n|n−1 +CTR−1yn (28)

P−1n|n = P−1n|n−1 +CTR−1C (29)

• the requirements from individual sensors are derived by the equations above
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Proposition 4: Consider a random variable xn evolving in time as
xn = Axn−1 +wn−1 being observed by K sensors in every time step n.
Suppose they generate measurements of the form yn,k = Ckxn + vn,k.
Then the global error covariance matrix and the estimate are given in
terms of the local covariances and estimates by

P−1n|n = P−1n|n−1 +
∑K

k=1

(
P−1n,k|n −P−1n,k|n−1

)

P−1n|nx̂n|n = P−1n|n−1x̂n|n−1 +
∑K

k=1

(
P−1n,k|nx̂n,k|n −P−1n,k|n−1x̂n,k|n−1

)
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Proof: Note that overall linear system is given by

yn,1

...
yn,K

z1
...

zK


=



C1

...
CK

H1

...
HK


xn +



vn,1

...
vn,K

u1

...
uK


,

[
yn

z

]
=

[
C
H

]
xn +

[
vn

u

]

Lets now simplify CTR−1yn

CTR−1yn =
[
CT

1 · · ·CT
K

]

R−1

1 0 · · · 0

0 R−1
2 · · · 0

...
...

. . .
...

0 0 · · · R−1
K


yn,1

...
yn,K


=
∑K

k=1 C
T
k R−1

k yn,k

=
∑K

k=1

(
P−1

n,k|nx̂n,k|n −P−1
n,k|n−1

x̂n,k|n−1

)
(30)

CTR−1C =
∑K

k=1 C
T
k R−1

k Ck

=
∑K

k=1

(
P−1

n,k|n −P−1
n,k|n−1

)
(31)

P. C. Weeraddana (KTH) Distributed Estimation February 11, 2013 40 / 52



Dynamic Sensor Fusion
Distributed Kalman Filtering

recap:

P−1n|n = P−1n|n−1 +
∑K

k=1

(
P−1n,k|n −P−1n,k|n−1

)

P−1n|nx̂n|n = P−1n|n−1x̂n|n−1 +
∑K

k=1

(
P−1n,k|nx̂n,k|n −P−1n,k|n−1x̂n,k|n−1

)

Based on the result above → two architectures for dynamic sensor fusion

• method 1: more computation at the fusion center, less communication overhead

• method 2: less computation at the fusion center, more communication overhead
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say n = 0....what will happen ?

P
−1
n|n = P

−1
n|n−1

+
∑K

k=1

(
P−1

n,k|n − P−1
n,k|n−1

)
P
−1
n|nx̂n|n = P

−1
n|n−1

x̂n|n−1 +
∑K

k=1

(
P−1

n,k|nx̂n,k|n − P−1
n,k|n−1

x̂n,k|n−1

)

y0,1 y1,1 y2,1 y3,1

sensor 1 measurements

x0 x1 x2 x3

what we want to estimate

y0,2 y1,2 y2,2 y3,2

sensor 2 measurements

. .sensor 1 / sensor 2 fusion center

P−1
0,1|0, x̂0,1|0

P−1
0,2|0, x̂0,2|0

P1,1|0 = AP0,1|0A
T + Q

x̂1,1|0 = Ax̂0,1|0

P1,2|0 = AP0,2|0A
T + Q

x̂1,2|0 = Ax̂0,2|0

P1|0 = AP0|0A
T + Q

x̂1|0 = Ax̂0|0
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Dynamic Sensor Fusion
Distributed Kalman Filtering (method 2)
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key idea:

• the term P−1
n|n−1

x̂n|n−1 can be written in terms of contributions from individual sensors

• the term P−1
n|n−1

can be written in terms of contributions from individual sensors

• try it...
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Outline

• Star Topology

• General Topology

• One Sensor Case

• Model of the measurements for one sensor
• Model of the Estimator
• Mean Squared Error (MSE) to Chose L
• LMMSE Estimate

• Combining Estimators from Many Sensors (Star Topology)

• Static Sensor Fusion

• Sequential Measurements from One Sensor

• Sequential Measurements from Many Sensors (Star Topology)

• Dynamic Sensor Fusion, Centralized Setup
• Dynamic Sensor Fusion, Centralized Setup (Drawbacks)
• Dynamic Sensor Fusion, Distributed Kalman Filtering

• Combining Estimators from Many Sensors (Arbitrary Topology)

• Static Sensor Fusion with Limited Communication Ranges
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Network with Arbitrary Topology

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

Plot of Wireless Sensors Network

Location in x direction

L
o
c
a
ti
o
n
 i
n
 y

 d
ir
e
c
ti
o
n

Figure: Network with a Arbitrary Topology: Solid lines indicating that there is message communication between nodes. In this
network, there is no node acting as fusion center.
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Network with Arbitrary Topology

• star topology: essentially a two step procedure
- all the nodes transmit local estimates to a central node (called fusion

center)
- central node calculates and transmits the weighted sum of the local

estimates back

• final outcome is a weighted average

• ⇒ generalize the approach to an arbitrary graph

• this approaches are along the lines of average consensus algorithms

• no fusion center
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Static Sensor Fusion with Limited Communication
Range

example scenario:

• K nodes, each measure a scalar value x, measurements are noisy

• nodes are connected according to an arbitrary graph

• each node wants to calculate the average of all the scalars

yk = x+ vk , k = 1, . . . ,K (32)

important: provided the noise is iid Gaussian then the maximum likelihood (ML) estimate x̂ of
x is given by the average of all yk values, i.e.,

x̂ = (1/K)
∑K

k=1 yk = (1/K)1Ty (33)

question: how to obtain x̂ just by coordinating with adjacent neighbors (no central fusion
center) ?
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Static Sensor Fusion with Limited Communication
Range

one way:

• iterative method, iterations n = 0, 1, 2, . . .

• each sensor k, during iteration 0, set x0,k = yk

• each sensor k implements the dynamical system

xn+1,k = xn,k + h
∑

j∈Nk
(xn,j − xn,k) , (34)

where Nk is the adjacent sensors of sensor k

• just local communications

• compact form
xn+1 = (I− hL)xn , n = 0, 1, 2, . . . , (35)

where L is the Graph Laplacian matrix ?
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Static Sensor Fusion with Limited Communication
Range

question: when n→∞ do we get (xn+1)k = x̂ for all k = 1, . . . ,K

answer: YES

if and only if

(I− hL)1 = 1, 1T(I− hL) = 1T, ρ
(
(I− hL)− 11T

)
< 1 (36)

• condition 1 is true: each row sum of L is 0

• condition 2 is true: each column sum of L is 0.

• condition 3 is true: for small enough h

the idea extends in a straightforward manner to more general models such as

xn+1,k = xn,k + hW−1
k

∑
j∈Nk

(xn,j − xn,k) , (37)
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