

Metallization, Contacts and BEOL Processing

Lecture 9: Metallization and BEOL

- Metallization Technology
 - Evaporation
 - Sputtering
 - Evolution of Metallization
- Back End Of the Line (BEOL)
 - ITRS Requirements
 - Dielectrics
 - Integration
- Future Options

Metallization: Two Main Deposition Methods

1) Chemical Vapor Deposition (CVD)

Gases are introduced into the deposition chamber that react and form the desired film on the substrate surface.

Such as APCVD, LPCVD, PECVD, HDPCVD, ALD

2) Physical Vapor Deposition (PVD)

Use a certain physical process to transfer materials, i.e., transfer atoms or molecules onto the substrate (Si) surface and deposit them into films. Such as MBE, evaporation, sputtering

Physical Process

(a) The source material is heated up and evaporated from condensed phase (solid or liquid phase) to gas phase. The needed energy for the evaporation is Vaporization Heat ΔH_v

$$\log P_{v} = A - \frac{B}{T} \qquad P_{v} \text{ is vapor pressure} \\ A \text{ is integral constant} \\ B = \frac{\Delta H_{v}}{2.3R_{0}} \qquad R_{0} \text{ is Avogadro constant}$$

(c) Evaporated atoms are adsorbed onto the substrate wafers and nucleate and grow into films

Dependence of Vapor Pressure on Temperature for different Elements

For the sake of suitable deposition rate, the vapor pressure should reduce to less than 10 mTorr.

Ta, W, Mo and Pt have very high melting points. For example, in order for 10 mtorr vapor pressure, W needs the temperature over 3000 °C.

Figure 12.2 Vapor pressure curves for some commonly evaporated materials (*data adapted from Alcock et al.*).

Properties:

- Can evaporate just about any element
- Deposition rate of some elements very slow
- Difficult to evaporate alloys and compounds
- Step coverage is poor (line of sight and S_c ~
 1)
- Not applicable for mass production

Superiority of Sputtering:

 Better step coverage than evaporation

Less radiation caused defects than e beam evaporation

 ✓ Better performance for the fabricated compound materials and alloys

 Applicable for dielectric deposition

Past: Evaporation

- Step coverage and deposition of alloys
- No AI CVD in production

Sputtering tools are similar to RIE and PECVD tools – only work in "reverse order" \bar{f}

Step coverage:

Sputtering targets are generally large and provide a wide range of arrival angles in contrast to a point source

Higher temperature may enhance ion mobility on surface

New sputter deposition technique: Ionized sputtering RF coil around the plasma induces collisions in the plasma creating the ions Ionizing field will direct ion flux perpendicular to wafer \rightarrow narrow distribution of arrival angles improves filling or coating the bottom of deep contact holes

Collimated Sputtering

• Enhancing directionality

Reactive Sputter

Introduce reactive gases, such as O_2 or N_2 , into the chamber to change or control the properties of the sputtered films.

Examples:

- Low-temperature fabrication of SiO_x and SiN_x passivation films
- Multilayer intermetal dielectrics
- Conductive films or diffusion barrier layers of TiN, TaN, etc.

Steady-state Voltage Distribution in RF Sputtering Systems

Usually small-area target electrode is used to make most voltage difference apply on the target and let sputtering happen there. The wafer electrode can be connected with the chamber to increase the voltage difference ratio.

The wafer electrode can also be applied with RF bias separately for precleaning the wafer before actual deposition, or "sputter etching". Another application is in "bias-sputtering", where deposition and sputtering of the wafer are done simultaneously. It can improve step coverage.

In both conventional DC and RF sputtering, the efficiency of ionization from energetic collisions between the electrons and gas atoms is rather low. Most electrons lose their energy in non-ionizing collisions or are collected by the anode. Magnetron sputtering can improve such efficiency.

- ✓ Can sputter alloys and refractory metals and unlike evaporation, do not change the alloy component
- ✓ Secondary electrons emitted from the cathode do not bombard the wafers due to the restriction from magnetic field and the temperature increase of wafers can be prevented.
- ✓ Good uniformity, reproducibility, and step coverage
- ✓ High efficiency

CVD versus PVD (coarse comparison)

	CVD	PVD
Flexibility	Poor	Good
Deposition temperature	High	Low
Deposition pressure	High	Low
Step coverage (conformality)	Good	Poor
Thickness uniformity	Good	Good
Composition control	Good	Poor
Film purity	High	Low
Dielectric	Preferred	-
Metal	-	Preferred

Preferred Deposition Methods by Metal

Al	Magnetron sputter deposition		25-300°C (standard deposition)
			440-550°C (hot Al for in- situ reflow)
			CVD difficult for alloys (Al-Cu-Si)
Ti and	Magnetron		CVD difficult
Ti-W	sputter deposition (standard, ionized or collimated)		Nitrogen can be added to Ti-W to stuff grain boundaries.
W	LPCVD	$2WF_6 + 3SiH_4 \rightarrow$	250-500°C
		$2W + 3SiF_4 + 6H_2$	Blanket deposition with
		$WF_6 + 3H_2 \rightarrow$	two step process using both reactions is
		W + 6HF	common.
TiSi ₂	Sputter and	Ti(sputtered)+	Sputter/reaction give self-aligned silicide
	surface reaction	$Si(exposed) \rightarrow TiSi_2$	
	Co-sputtering or CVD		Two step anneal process required (600/800°C)
TiN	Reactive sputter deposition	$Ti + N_2(in plasma) \rightarrow TiN$	Organometallic source possible for MOCVD deposition

Concept Test 10.1

When writing the lab reports, I can

- A. use text passages from online sources like Wikipedia without referencing them, because Wikipedia is a free resource accessible for anyone.
- B. use text passages from non-copyrighted web sources without referencing them.
- C. quote any source I like, even when it is copyrighted.
- D. use sentences from Journal publications like "Nature" or "Electron Device Letters", because they are so well written that there is no need to change them.
- E. use facts from journal publications without a reference they are facts after all.

Lecture 9: Metallization and BEOL

- Metallization Technology
 - Evaporation
 - Sputtering
 - Evolution of Metallization
- Back End Of the Line (BEOL)
 - ITRS Requirements
 - Dielectrics
 - Integration
- Future Options

Evolution of Metallization

- Simple Al/Si contacts
- Highly doped silicon regions to insure
- Ohmic, low resistance contacts
- \bullet Tunneling current through a Schottky barrier depends on the width of the barrier and hence $\rm N_{\rm D}$
- In practice, N_D , $N_A > 10^{20}$ required

Si solulibility in Al causes "*spiking*"

 \rightarrow Si diffuses into Al, voids form,

Al fills voids

 \rightarrow Short-circuited pn junctions

Solution: Add 1-2% Si in AI to satisfy solubility

- Widely used, but Si can precipitate when cooling down and increase ρ_{c}

Silicon

Contact Resistivity

Metal-Si contact must be ohmic, i.e. a tunneling contact

Low contact resistance $R_c = \rho_c / A_c$ where ρ_c is contact resistivity [Ωcm^2] and A_c contact area High doping in Si required (>6x1019 cm-3)

Aluminum:

- Low resistivity $\rho\text{-}2.7~\mu\Omega\text{cm}$
- Low contact resistivity $\rho_C {\sim} 1{\text -}10~\mu\Omega cm^2$ since Al reduces native oxide on Si
- Excellent adhesion

Avoid degradation during subsequent processing: Al-Si system: Eutectic temperature of 577°C Forming gas anneal (FGA) or post-metal anneal ("alloying") at ~450°C Barrier layers, e.g. TiN, TiW or silicides

FIGURE 4 Specific contact resistance to Si. (From Ref. 2 with permission.)

(Sze p 376)

Contact Resistance and Measurement

Feature Contact Resistance ρ_c – Ohmic contact quality parameter

$$\rho_c = \frac{1}{\left(\frac{dJ}{dV}\right)_{V \to 0}}$$

Definition: Change rate of current density with voltage near zero bias

Unit of ρ_c : Ω -cm² or Ω - μ m²

Contact Resistance $R_c = \frac{\rho_c}{A}$

$$R = \rho \times \frac{L}{A}$$

$$\rho_c \equiv R \times A \equiv \rho \times L$$

Metal-Si contact, $\rho_c \sim 10^{-5}$ - $10^{-9} \Omega \cdot cm^2$ Metal-Metal contact, $\rho_c < 10^{-8} \Omega \cdot cm^2$

Four-Point Probe Sheet Resistance Measurement

The four probe points stand at a straight line and touch the sample surface with equal pressure. The outer two probes force a current through the sample; the inner two probes measure the voltage drop.

$$V = \frac{\rho I}{\pi x_j} \ln 2$$
$$R_s = \frac{\rho}{x_i} = \frac{\pi}{\ln 2} \frac{V}{I} = 4.53 \frac{V}{I}$$

Van der Pauw Scheme

For 0.4S > t !

Transmission Line Model (TLM)

Evolution of Metallization: Spiking

Alloying

- Alloying is to form low-resistance Ohmic contact between metal and Si and improve the adhesion between metal and SiO₂.
- Above 300 °C, Si can dissolve in Al by a certain percentage. Keeping such temperature for enough time may form a very thin layer of Al-Si alloy at the Al/Si interface. Al contacts the underneath heavily-doped semiconductor through this Al-Si alloy, resulting in Ohmic contact.
- Alloying temperature for Al-Si system is usually 450-500 °C.

Evolution of Metallization

Spiking can be up to $2\mu m$

 \rightarrow Barrier layer(s)

- Ti or TiSi₂ for good contact and adhesion
- TiN for barrier (See Table 11.3 in text for various barrier options.)

Aluminum has been the dominant material for interconnects

- low resistivity
- adheres well to Si and SiO₂
- can reduce other oxides (= ohmic contacts)
- can be etched and deposited easily

Problems:

- relatively low melting point and soft \rightarrow need a higher melting point material for gate electrode and local interconnect \rightarrow polysilicon
- hillocks and voids easily formed in Al

Evolution of Metallization: Hillocks and Voids

Compressive stress in AI during thermal cycling

Al grains pushed up forming hillocks and/or voids

Depends much upon grain structure of AI connectors

Adding a few % Cu stabilizes grain boundaries and minimizes hillock formation
Evolution of Metallization: Electromigration

Broken interconnects occur at high current densities

- Caused by "electromigration"
- High current density (0.1-0.5 MA/cm²) causes diffusion of AI atoms in direction of electron flow by momentum transfer (e⁻ → AI)
- Can cause hillocks and voids, leading to shorts or opens in the circuit

Adding Cu (0.5-4 weight %) can also inhibit electromigration

- \rightarrow Al is commonly deposited with 1-2 wt % Si and 0.5-4 wt % Cu
- \rightarrow Reliability tests ("accelerated" tests at high J_c and T_{op})

Evolution of Metallization: Electromigration

Evolution of Metallization: Silicides

Next development:

Use of other materials with lower resistivity as local interconnects, like TiN

Silicides used to

- 1. Strap polysilicon
- 2. Strap junctions
- 3. As a local interconnect

Evolution of Metallization: Silicides

Silicide must be thermally stable, exhibit low resistance and allow thin pn-junctions (~500 Å between silicide and pn junctions)

Most common in production: TiSi2:
Two RTP steps at 700°C and 800°C:(1) Ti + 2Si --> TiSi2 (C-49)60-70 $\mu\Omega$ cm(2) TiSi2(C-49) --> TiSi2 (C-54)15-20 $\mu\Omega$ cm

Problem to perform C-49 transformation on thin poly-lines!

Cobalt disilicide for 0.18 μ m CMOS: Co + Si --> CoSi (450 °C) CoSi + Si --> CoSi₂ (700 °C) For 0.1 μ m:

Other silicides in production: MoSi2, TaSi2, WSi2, (PtSi)

Maybe NiSi is used provided thermal stability can be solved Minor Si consumption \rightarrow Ni dominant moving species

Silicide Integration

Polycide = polysilicon-silicide Salicide = Selfaligned silicide (shown here)

(a) Basic MOSFET structure fabricated (b) Metal deposition

(c) 1st anneal in N₂ at 300-700 $^{\circ}$ C (d) Selective removal of unreacted metal

Silicide Integration

Bridging problem in salicide

• Si atoms moves to form TiSi₂

Figure 11–15 Schematic illustration of silicide formation for a silicide that forms by (a) diffusion of metal species and by (b) diffusion of silicon. In the latter case, lateral encroachment of the silicide over the oxide spacer can occur. (Plummer p 702)

Remedy: Use N₂ during RTA \rightarrow TiN formation suppresses bridging

Silicide Integration

Example: Salicide process for Ultra-Thin-Body (UTB) SOI MOSFETs

Remedy: Use N₂ during RTA,. TiN formation suppresses bridging

FIGURE 13

"Bridging" during the formation of Ti salioide: (a) TiSia bridges over sidewall spacer and a short circuit is formed between S/G and D/G; (b) during TiSia formation. Si diffuses into Ti to form TiSia: under favorable conditions Si can diffuse a long distance and form TiSia on the sidewall spacer; (c) in a nitrogen atmosphere, nitrogen diffuses into Ti and blocks the diffusion of Si, reducing or eliminating bridging; TiN and/or Ti-O-N are formed on top of TiSia.

Lecture 9: Metallization and BEOL

- Metallization Technology
 - Evaporation
 - Sputtering
 - Evolution of Metallization
- Back End Of the Line (BEOL)
 - ITRS Requirements
 - Dielectrics
 - Integration
- Future Options

Evolution of BEOL

Early two-level metal structure Nonplanar topography leads to lithography, deposition, filling issues. These issues get worse with additional levels of interconnect \rightarrow Further change in structure \rightarrow Planarization!

Evolution of BEOL: Planarization

Damascene Process

• Early approach to planarization incorporated tungsten (W) plugs and a simple etchback process

$$2WF_6(g) + 3SiH_4(g) \xrightarrow{300°C} 2W(g) + 3SiF_4(g) + 6H_2(g)$$

$$WF_6(g) + 3H_2(g) \xrightarrow{<450^{\circ}C} W(g) + 6HF(g)$$

W/TiN/Ti/Si

W does not adhere well to SiO_2 . TiN is needed as adhesion layer. To reduce contact resistance, Ti is added as contact layer for Si and TiN

Two-Step W-stud Filling: Silane for low-pressure nuclear growth + H₂ for complete and fast filling

IH2655 Spring 2013

Evolution of BEOL Planarization and advanced "Damascene" processes 1990's: Oxide TiN Al(Cu) - Metal 2 TIN TI Interconnects become multilayer structures Void in Al line TiN Al(Cu) - Metal 1 TiN Ti Oxide Ti Al N+ Ti TiSi₂ Silicon TiN

(Plummer p. 707)

- Shunting the AI helps mitigate electromigration and can provide mechanical strength, better adhesion and barriers in multi-level structures
- TiN on top also acts as antireflection coating for lithography

Summary: Properties of Interconnect Materials

Material	Thin film resistivity ($\mu\Omega$ cm)	Melting point (°C)
AI	2.7-3.0	660
W	8-15	3410
Cu	1.7-2.0	1084
Ti	40-70	1670
PtSi	28-35	1229
C54 TiSi ₂	13-16	1540
WSi ₂	30-70	2165
CoSi ₂	15-20	1326
NiSi	12-20	992
TiN	50-150	2950
Ti ₃₀ W ₇₀	75-200	2200
Heavily doped poly-Si	450-10000	1417

Concept Test 10.2

- 9.2: We have discussed several metallization technologies. Which of the following statements are true?
- A. Sputtering uses a plasma to ionize a gas which contains the material to be deposited.
- B. Evaporation of compounds (i.e. two or more materials mixed together) is not ideal because compounds typically have a high melting point.
- C. CVD is used for dielectrics, but not for metallization.
- D. Evaporation is more directional than CVD and CVD is more directional than sputtering.
- E. None of the above.

BEOL in VLSI: Interconnects and Dielectrics

Local interconnects: 1st level of metallization

- On device level
- In the past: Al
- Now: Heavily doped polysilicon and/or silicides
- Must withstand high temperatures ~800°C

Global interconnects: 2nd level of metallization and up

- On chip level with length ~ μm
- AI and Cu used
- Low-temperature processes

BEOL in VLSI: Interconnects and Dielectrics

- More metal interconnect levels increases circuit functionality and speed.
- Interconnects are separated into local interconnects (polysilicon, silicides, TiN) and global interconnects (usually AI, Cu).
- Backend processing is becoming more important.
- Larger fraction of total structure and processing.
- Increasingly dominates total speed of circuit.

(Photo courtest of Integrated Circuit Engineering.)

Cu metallization with etched off dielectrics, IBM 1997

Mikael Östling

IH2655 Spring 2013

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
Number of metal levels	11	11	11	12	12	12	12	12	13
Metal 1 wiring pitch (nm)	180	156	136	118	104	90	80	72	64
Metal 1 A/R (for Cu)	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.9
Intermediate wiring dual damascene A/R. (Cu wire/via)	1.7/1.5	1.7/1.6	1.8/1.6	1.8/1.6	1.8/1.6	1.8/1.6	1.8/1.6	1.9/1.7	1.9/1.7
Conductor effective resistivity (μΩ–cm) Cu wiring, assumes no scattering	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Interlevel metal insulator – effective dielectric constant (κ)	3.1-3.4	3.1–3.4	2.7–3.0	2.7–3.0	2.5–2.8	2.5–2.8	2.5–2.8	2.1-2.4	2.1-2.4
J _{max} (A/cm ²) – intermediate wire (at 105℃)	8.91E+05	1.37E+06	2.08E+06	3.08E+06	3.88E+06	5.15E+06	6.18E+06	6.46E+06	8.08E+06

- Circuit feature size continuously decreases, and current density increases
- The number and length of internal connections increase rapidly (with chip size)
- The number of metal levels and the metal aspect ratio (AR) increase

ITRS 2006

Line resistance, interconnect coupling and substrate coupling all contribute to an RC delay

$$\tau_L = 0.89\varepsilon \ \rho \frac{A}{\left(F_{\min}\right)^2}$$

where A = chip area, F_{min} = minimum feature size, ρ = interconnect resitivity and ϵ = dielectric constant

0.18 µm CMOS: 30-40% of delay due to interconnects!

Interconnect Delay

Interconnect and gate delay time versus chip area.

 τ_g : gate delay in CMOS ring oscillator

Interconnect RC crisis partly postponed by increased dimensions and spacing of the highest level of interconnects ("fat wiring")

Mikael Östling

Requirements in IC Metallization

Electronics, Mechanics, Thermodynamics and Chemistry

- 1) Low-resistance metal-semiconductor contacts
- 2) Low-resistance interconnects
- **3)** Good adhesion with underneath oxide (dielectric) layers
- 4) Good step coverage
- 5) Stable structure, no electromigration or corrosion
- 6) Easy to etch
- 7) Simple fabrication process

Lecture 9: Metallization and BEOL

- Metallization Technology
 - Evaporation
 - Sputtering
- Back End Of the Line (BEOL)
 - ITRS Requirements
 - Evolution of Metallization
 - Dielectrics
 - Integration
- Future Options

BEOL: Dielectrics

 SiO_2 -CVD (SiH₄ Source), PECVD SiO₂ (TEOS), SOG...

...but: SiO2 only a starting point $\tau_L = 0.89\varepsilon \ \rho \frac{A}{(F_{\min})^2}$

Low-k dielectric material must meet many requirements:

- Sufficient mechanical strength to support multi-interconnects
- High Young's modulus
- High breakdown voltage (> 4 MV / cm)
- ✓Low-leakage (<10⁻⁹ A/cm² at 1 MV / cm)
- ✓Thermal stability (> 450 °C)
- ✓Good adhesive strength
- Low water absorption
- ✓Low film stress
- Low thermal expansion
- Easy for planarization
- ✓CMP compatibility

BEOL: Dielectrics

Global planarization required!

c) Global planarization

Past: Spin-on-glass (SOG)

- Fills like liquid photoresist, but becomes SiO₂ after bake and cure
- Done with or without etchback
- Can also use low-K SOD's (spin-on-dielectrics)
- SOG oxides not as good quality as thermal or CVD oxides

Now: Chemical Mechanical Polishing (CMP)

Lecture 9: Metallization and BEOL

- Metallization Technology
 - Evaporation
 - Sputtering
- Back End Of the Line (BEOL)
 - ITRS Requirements
 - Evolution of Metallization
 - Dielectrics
 - Integration
- Future Options

Dual damascene process

- Vias and global interconnects of same material
- Less complex than single damascene
- Etch stop needed in IMD

Process sequence:

- Dielectric and etch stop deposition
- 2. Via definition by etch
- 3. Pad definition by etch
- 4. Barrier (e.g., tantalum) and seed copper (Cu) physical vapor deposition
- 5. Copper plating and chemical mechanical polishing (CMP)

C.-K. Hu and J.M.E. Harper, Mater. Chem. Phys., 52 (1998), p. 5

5.

via and pad

(SiN)

Multilevel-Multilayer Metallization

Examples

(Photos courtesy of VLSI Technology.)

Left: three metal levels and encapsulated BPSG for the first level dielectric; SOG (encapsulated top and bottom with PECVD oxide) and CMP in the intermetal dielectrics. The multilayer metal layers and W plugs are also clearly seen.

Right:five metal levels, HDP oxide (with PECVD oxide on top) and CMP in the intermetal dielectrics.

Examples

Layer	Dielectric Material	Pitch (nm)	Thick (nm)	Aspect Ratio
Metal 1	Low k	160	144	1.8
Metal 2	Low k	160	144	1.8
Metal 3	Low k	160	144	1.8
Metal 4	Low k	240	216	1.8
Metal 5	Low k	280	252	1.8
Metal 6	Low k	360	324	1.8
Metal 7	Low k	560	504	1.8
Metal 8	SiO ₂	810	720	1.8
Metal 9	Polymer	30.5µm	7μm	0.4

SEM image of interconnect stack up to MT8

P. Moon et al. "Intel's 45nm CMOS Technology", Intel Technology Journal, 12(02), 2008

Lecture 9: Metallization and BEOL

- Metallization Technology
 - Evaporation
 - Sputtering
- Back End Of the Line (BEOL)
 - ITRS Requirements
 - Evolution of Metallization
 - Dielectrics
 - Integration
- Future Options

Future Options: Low-K Dielectrics

- Porous low-к materials
 - Poor mechanical integrity
 - Substantial damage from plasma etching
 - Integration of porous low- κ materials with $\kappa \leq 2.0$ extremely difficult
- Air gaps
 - Gradual transition from ultra low-к materials to air-gaps considered
 - Hybrid of low-к materials and air-gaps most realistic solution

Realistic air gap process:

- Minimal process step increase
- Maintain mechanical stability
Future Options: Low-K Dielectrics

Material class	Material	Dielectric constant	Deposition technique
Inorganic	SiO ₂ (including PSG and BPSG)	3.9-5.0	CVD/Thermal ox./Bias- sputtering/HDP
	Spin-on-glass (SiO ₂) (including PSG, BPSG)	3.9-5.0	SOD
	Modified SiO ₂ (e.g. fluorinated SiO ₂ or hydrogen silsesquioxane - HSQ)	2.8-3.8	CVD/SOD
	BN (Si)	>2.9	CVD
	Si₃N₄ (only used in multilayer structure)	5.8-6.1	CVD
Organic	Polyimides	2.9-3.9	SOD/CVD
	Fluorinated polyimides	2.3-2.8	SOD/CVD
	Fluoro-polymers	1.8-2.2	SOD/CVD
	F-doped amorphous C	2.0-2.5	CVD
Inorganic/Org- anic Hybrids	Si-O-C hybrid polymers based on organo-silsesquioxanes (e.g. MSQ)	2.0-3.8	SOD
Aerogels (Microporous)	Porous SiO ₂ (with tiny free space regions)	1.2-1.8	SOD
Air bridge		1.0-1.2	

Future Options: Interconnects

Application	Option	Potential Advantages	Primary Concerns
Cu Extensions:	Airgaps	Lower latency and power, mature technology	Reliability, cost, integration issues
	3D	Form factor, heterogeneous integration, reduced power and latency	3D design tools and standards, reliability of TSVs, extreme thinning, high aspect ratio TSV, thermal heat extraction
	LC Transmission Lines	Mature technology, reduced power and latency for long lines	Limited bandwidth due to wide pitch
Cu Replacements:	Other metals (Ag, silicides, stacks)	Potential lower resistance in fine geometries	Grain boundary scattering, integration issues, reliability
	Nanowires	Ballistic conduction in narrow lines	Quantum contact resistance, controlled placement, low density, substrate interactions
	Carbon Nanotubes	Ballistic conduction in narrow lines, electromigration resistance	Quantum contact resistance, controlled placement, low density, chirality control, substrate interactions
	Graphene Nanoribbons	Ballistic conduction in narrow films, planar growth, electromigration resistance	Quantum contact resistance, control of edges, deposition and stacking, substrate interactions
	Optical (interchip)	High bandwidth, low power and latency, noise immunity	Connection and alignment between die and package, optical /electrical conversions
	Optical (intrachip)	Latency and power reduction for long lines, high bandwidth with WDM	Benefits only for long lines, need compact components, integration issues, need WDM
	Wireless	Available with current technology, parallel transport medium, high fan out capability	Very limited bandwidth, intra-die communication difficult, large area and power overhead
	Superconductors	Zero resistance interconnect, high Q passives	Cryogenic cooling, frequency dependent resistance, defects, low critical current density, inductive noise and crosstalk
Native Device Interconnects:	Nanowires	No contact resistance to device, ballistic transport over microns	Quantum contact resistance to Cu, substrate interactions, fan out/branching and placement control
	Carbon Nanotubes	No contact resistance to device, ballistic transport over microns	Quantum contact resistance to Cu, fan out/branching and placement control
	Graphene Nanoribbons	No contact resistance to device, ballistic transport over microns	Quantum contact resistance to Cu, deposition and patterning processes.
	Spin Conductors- Si(Mn), Ga(Mn)As	Long diffusion length for spin excitons	Low T requirements, low speed, surface magnetic interactions

ITRS 2009

Future Options: 3D-Through-Si-Via (TSV) Technology

- Through Silicon Via (TSV) connections
 - Galvanic connection between the two sides of a Si wafer
 - Electrically isolated from the substrate and from other TSV connections
- Isolation layer surrounding the TSV conductor is called the **TSV liner**:
 - Electrically isolate the TSVs from the substrate and from each other
 - This layer determines the TSV parasitic capacitance
- Barrier layer between the liner and the TSV metal:
 - Avoid diffusion of metal from the TSV into the Si-substrate

Summary of Key Ideas

• Backend processing (interconnects and dielectrics) have taken on increased importance in recent years.

• Interconnect delays now contribute a significant component to overall circuit performance in many applications.

• Early backend structures utilized simple AI to silicon contacts and are now replaced by advanced material stacks.

• Reliability issues, the need for many levels of interconnect and planarization issues have led to much more complex structures today involving multilayer metals and dielectrics.

• CMP is the most common planarization technique today.

• Copper and low-K dielectrics are now found in advanced chips and have become common features.

• Beyond these changes, interconnect options in the future include architectural (design) approaches to minimizing wire lengths, optical interconnects, carbon nanotubes, graphene, electrical repeaters and RF circuitry.