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Wave equations and  
properties of waves in ideal media 

T. Johnson 



•  Derivation of the wave equation and definition of wave quantities: 
–  dispersion equation / dispersion relation / refractive index 
–  wave polarization 

•  Some math for wave equations (mainly linear algebra) 
–  relation between damping and antihermitian part of the dielectric tensor 

•  Waves in ideal anisotropic media 
–  birefringent crystals (see fig.) 

•  Group velocity 
•  Plasma oscillations 
•  Elementary plasma waves 

–  Langmuir waves 
–  ion-acoustic waves 
–  high frequency transverse wave 
–  Alfven waves 

•  Wave resonances & cut-offs 

Outline 
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Why do we see the letters twice? 



•  Wave equations can be derived for B, E and A. 
•  Waves in vacuum, i.e. no free charge or currents; then φ=const!  

Using Fourier transformed quantities: 

•  Ampere’s law: 

where 
•  Homogeneous wave equation: 

•  Solutions exists for:         , the dispersion equation! 

The wave equation in vacuum 
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€ 

E(ω,k) = iωA(ω,k)    ,     B(ω,k) = ik ×A(ω,k)    ,     ik •A(ω,k) = 0

€ 

ik × B + iωE /c 2 = µ0J

€ 

k 2
−ω 2 /c 2( )A = 0

€ 

k × k ×A( ) +ω 2 /c 2A = −µ0J

€ 

k × k ×A( ) = k k •A( ) − k 2A

€ 

k 2
−ω2 /c 2( ) = 0
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Dispersion relations 
•  A wave satisfying a dispersion equation is called a Wave Mode. 

•  Solutions to the dispersion equation can be written as a relation 
between ω and k called a dispersion relation, e.g. 

–  Note: here ω is the frequency and ωM(k) is a function of k   
–  the sub-index M is for wave mode. 
–  in general the function ωM is depens on the dielectric response and 

therefore is a property of the media 

•  In vacuum the dispersion relation reads: 

i.e. light waves 
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€ 

ω =ωM (k)

€ 

ω = ±k /c  ⇒   ωM ±(k) = ±k /c
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Refractive index 
•  Dispersion relations can be written using the refractive index n  

•  A dispersion relation for a wave mode can be rewritten… 
–  by replacing  

–  or by replacing 

•  The dispersion relation for waves in vacuum then reads 

i.e. the phase velocity of vacuum waves is the speed of light  
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€ 

n ≡ k c
ω

~ "speed of light"
"phase velocity"

€ 

n ≡ nM (k)

€ 

n = ±1
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€ 

n ≡ nM (ω,ek )
€ 

ω 2 = (|k | c /n)2

€ 

k =|ωn /c | ek



Plane waves 
•  In this course we only consider infinite domains 

–  and almost exclusively homogeneous media 
•  Then the wave equation has plane wave solutions  

•  Take the plane wave for all perturbed quantities (in Maxwell’s 
equation and the equation of motion); then  

–  just as when we do Fourier transforms! 
–  for linear differential equations: Fourier transforms and plane wave 

anzats give the same equation 
–  e.g. the same wave equations, dispersion relation…!! 
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€ 

Ai x,t( ) = ˆ A i exp ik • x − iωt( )

€ 

∇→ik  ,   ∂
∂t
→−iω
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The dispersion relation describes the plane waves eigenmodes,  
i.e. what wave exists in abscense of external currents or charges 



•  Ex: Temporal Gauge, φ=0, the fields are described by A alone 

•  Ampere’s law: 

•  Split J=Jext+Jind , where Jext external drive and Jind is induced parts 

where αij is polarisation response tensor 
•  Inhomogeneous wave equation: 

Dielectric tensor: 

The wave equation in dispersive media 
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€ 

E(ω,k) = iωA(ω,k)    ,     B(ω,k) = ik ×A(ω,k)

€ 

ik × B + iωE /c 2 = µ0J

€ 

k × k ×A( ) + ω /c( )2A = −µ0J

€ 

Jind, i = α ij A j

€ 

Λ ij A j = −
µ0c

2

ω 2 Jexp, i

€ 

where  Λ ij =
c 2

ω 2 kik j − k
2δ ij( ) +Kij

€ 

Kij = δ ij +
1

ω 2ε 0
α ij

€ 

k × k × ...
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Wave operator 



Dispersion relations in dispersive media 
•  Homogeneous wave equation: 

(the book includes only the Hermitian part ΛΗ, but this is a technicality 
At the end of this calculations we get the same dispersion relation) 

•  Solutions exist if and only if: 

this is the dispersion equation. 
•  From this equation the dispersion relation can be derived 

where 
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€ 

Λ ij ω,k( )A j ω,k( ) = 0

€ 

Λ ω,k( ) ≡ det Λ ij ω,k( )[ ] = 0

€ 

ω =ωM (k)

€ 

Λ ωM (k),k( ) = 0
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Non-linear and linear eigenvalue problems 
•  This wave equation is a non-linear eigenvalue problem, to see this… 
•  Remember linear eigenvalue problems:  

for a matrix A find the eigenvalues  λ and the eigenvectors x such that:  

or alternatively 

Thus for the linear eigenvalue problem Λij is linear in λ . 
•  Our wave equation has the same form, except Λij(ω) is non-linear in ω . 
•  Thus, we are looking for the eigenvalues ωΜ and the eigenvectors A to 

the equation 

•  Exercise: show that when Kij=Kij(k), the wave equation is a linear eigenvalue problem in ω2. 
However, inertia in Eq. of motion (when deriving media responce) gives  Kij =Kij (ω,k). 
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€ 

Ax − λx = A − λI( )x = 0

€ 

Aij − λδij( )x j = Λ ij (λ)x j = 0
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Λ ij (ωM ,k)A j = 0



Polarization vector 
•  So the wave equation is an eigenvalue problem 

–  The eigenvalue is the frequency 
–  The normalised eigenvector is called the polarisation vector, eM(k)    

–  Note: the A-field is parallel to the E-field 
•  Note: the polarisation vector is complex – what does this mean? 

–  e.g. take eM = ( 2 , i ,0 ) / 51/2, then the vector potential is  

–  The difference in “phase” of eM1 and eM2 (in complex plane; one being 
real and the other imaginary) makes A1 and A2 oscillate 90o out of 
phase – elliptic polarisation!  
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€ 

eM (k) =
A ωM (k),k( )
A ωM (k),k( )

€ 

A(t,x)∝ Re   2 ,  i ,  0 [ ] exp(ik⋅ x + iωt){ } =  

€ 

=   2cos(k⋅ x +ωt) ,  cos(k⋅ x +ωt + 90o) ,  0 [ ] 
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the direction of the A-field! 



Longitudinal & Transverse waves  

 Definition:  
 Longitudinal & Transverse waves  
have eM parallel & perpendicular to k 
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•  Examples: 
•  Light waves have E || A perpendicular to k, i.e. a transverse wave 
•  Sounds waves (wave equation for the fluid velocity v)  

have v || k, i.e. a longitudinal wave. 



Linear algebra: cofactors 
•  An (i,j):th cofactor, λij of a matrix Λ is the determinant of the “reduced” 

matrix, obtained by removing row i and column j , times (-1)i+j   
•  In tensor notation (you don’t have to understand why!):  

•  Alternative definition for cofactors: 

–  Thus, for Λ=0 each column (λ1j , λ2j , λ3j )T is an eigenvector! 
•  It can be shown that 

where λkk is the trace of λ and eMi are the normalised eigenvectors 
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€ 

λai =
1
2
εabcε ijlΛbjΛcl

€ 

Λ ikλkj = Λδ ij

€ 

λai = λkkeMieMj
*
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€ 

λ21 = (−1)i+ j det
* Λ12 Λ13
* * *
* Λ32 Λ33

= (−1)i+ j Λ12 Λ13
Λ32 Λ33

e.g. 

reduced matrix 



Linear algebra: determinants 
•  The determinant can be written as (Melrose page 139) 

•  Derivatives (note that the three derivates are identical)  

•  Special case; take derivative w.r.t. the one tensor component 
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€ 

det Λ[ ] =
1
6
εabcε ijlΛaiΛbjΛcl

€ 

∂
∂Λ ij

det Λ(Λ11,Λ12,Λ21,Λ22 ...)[ ] = λnm
∂Λnm

∂Λ ij

= λij
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€ 

∂
∂x
det Λ(x)[ ] =

1
2
ε abcε ijlΛaiΛbj

∂Λcl

∂x
= λbj

∂Λbj

∂x

€ 

δniδ jm

Cofactors λbj! 



Linear algebra: Taylor expansion 
•  The determinant of this matrix is a function of the matrix 

components 

•  Perturbing the matrix components                         we can then 
Taylor expand 
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€ 

det Λ[ ] = f (Λ11,Λ12,...)

€ 

det Λ + δΛ[ ] = f (Λ ij + δΛ ij ) =

= f (Λ ij ) +
∂

∂Λ ij

f (Λ ij )δΛ ij +O(δΛ2) =

= det Λ[ ] +
∂

∂Λ ij

det Λ[ ]δΛ ij +O(δΛ2) =

= det Λ[ ] + λijδΛ ij +O(δΛ2)

€ 

Λ ij →Λ ij +δΛ ij



Damping of waves 
•  Next we’ll show that for low amplitude waves 

–  the anti-Hermitian part of the dielectric tensor KA
ij  describes wave 

damping, i.e. the decay of the wave  
–  the Hermitian part provide the dispersion relation 

•  Consider a plane wave with complex frequency ω+iωI    

–  The wave amplitude decays at a rate -ωI  
–  Note: the wave energy (~|E|2) decays at a rate γ=-2ωI   

•   The dispersion relation 

Exercise: show that ΛA=KA  
•  To simplify this further we need to assume weak damping … 
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€ 

Ai x,t( ) = ˆ A i exp ω I t( )exp ik • x − iωt( )

€ 

det Λ ij ω + iω I ,k( )[ ] = det Λ ij
H ω + iω I ,k( ) +Λ ij

A ω + iω I ,k( )[ ] = 0
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Weak damping of waves 
•  Assume the damping to be weak by: 

•  Also assume  ωI
 ~ KA    

–  Interpretation of the relation ωI
 ~ KA : reduce KA by factor, then ωI reduces by 

the same factor, thus the they go to zero together 
•  Expand in small ωI : 

•  Dispersion equation then reads 

–  Expand the determinant in small δΛij 
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€ 

Kij
A →0     and    ω I →0

€ 

≈ Λ ij
H ω,k( ) +Kij

A ω,k( ) + iω I
∂
∂ω

Λ ij
H ω,k( ) + iω I

∂
∂ω

Kij
A ω,k( ) +O(ω I

2)

Both small, i.e. ~ωI
2 

€ 

det Λ ij
H +δΛ ij[ ] = 0  ,   δΛ ij = Kij

A ω,k( ) + iω I

∂Λ ij
H ω,k( )
∂ω

+O(ω I
2)
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1st order in ωI € 

Λ ij ω + iω I ,k( ) ≈ Λ ij ω,k( ) + iω I
∂
∂ω

Λ ij ω,k( ) +O(ω I
2)



Weak damping of waves 
•  The dispersion equation (repeated from previous page): 

•  Taylor expand the determinant 

–  where λij are the cofactors of Λij
H(ω,k)     

•  NOTE: (see “Linear Algebra” pages):  

•  The dispersion equation can then be written as 
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€ 

det Λ ij
H +δΛ ij[ ] = det Λ ij

H[ ] +δΛ ijλij +O δΛ ij
2( )
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€ 

det Λ ij
H +δΛ ij[ ] = 0  ,   δΛ ij = Kij

A ω,k( ) + iω I

∂Λ ij
H ω,k( )
∂ω

+O(ω I
2)

€ 

det Λ ij
H ω,k( )[ ] + λijKij

A ω,k( ) + iω I
∂
∂ω

det Λ ij
H ω,k( )[ ] +O(ω I

2) = 0€ 

λij
∂
∂ω

Λ ij
H ω,k( ) =

∂
∂ω

det Λ ij
H[ ]



Weak damping of waves 
•  Note that the dispersion equation with weak damping has  

both real and imaginary parts 
–  The matrix of cofactors is Hermitian, thus  λij Kij

A  is imaginary 
–  Also: det(Λij

H) is real  

•  The first equation gives dispersion relation for real frequency   

and the second equations gives the damping rate 
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€ 

0 = Re det Λ ω,k( )[ ]{ } ≈ det Λ ij
H ω,k( )[ ] +O(ω I

2)

0 = Im det Λ ω,k( )[ ]{ } ≈ −iλijKij
A ω,k( ) +ω I

∂
∂ω

det Λ ij
H ω,k( )[ ] +O(ω I

2)

€ 

ω I =
iλijKij

A ωM (k),k( )
∂
∂ω

det Λnm
H ω,k( )[ ]

ω =ω M k( )

+O(ω I
2)
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€ 

ω =ωM k( )   such that :  det Λ ij
H ωM k( ),k( )[ ] +O(ω I

2) = 0



Energy dissipation rate, γM 

•  Alternatively we can form the energy dissipation rate,  
i.e. rate at which the wave energy is damped γM = - 2ωI   
–  express the cofactor in terms of polarisation vectors 

Note: this is related to the hermitian part of the conductivity, 

–  here RM is the ratio of electric to total energy 

and plays an important role in Chapter 15 
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€ 

λij = λkkeMieMj
*

€ 

RM k( ) =
λss ω,k( )

ω
∂
∂ω

det Λnm
H ω,k( )[ ]

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 
ω =ω M k( )

€ 

γM = −2iωM k( )RM k( ) eMi
* k( )Kij

A ωM k( ),k( )eMj k( ){ }
Matrix Vector Vector 

€ 

γM ∝ eMi
* iKij

A[ ]eMj ∝ eMi
* σij

HeMj

€ 

σij
H ∝ iKij

A



Determinant and the cofactors in the general case 
•  Explicit forms for dispersion equation and cofactors 
•  Write Λ in terms of the refractive index n and  

the unit vector along k, i.e.  κ = k / |k|    

•  Brute force evaluation give  

and the cofactors (related to the eigenvector) are 
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€ 

Λ ij =
c 2

ω 2 kik j − k
2δ ij( ) +Kij  →   Λ ij = n2 κ iκ j −δ ij( ) +Kij

€ 

det Λ[ ] = n4κ iκ jKij − n
2 κ iκ jKijKss −κ iκ jKisKsj( ) + det K[ ]

€ 

λij ≈ n
4κ iκ j − n

2 κ iκ jKss −δ ijκ rκ sKrs −κ iκ sKsj −κ sκ jKis( ) +

+ 12δ ij Kss
2 −KrsKsr( ) +KisKsj +KssKij
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Ex. 1: Isotropic, not spatially dispersive, media 
•  Isotropic, not spatially dispersive, media 

•  Place z-axis along k : 
(n = refractive index) 

•  Dispersion equation : 

•  Dispersion relations:  

–  Note: K(ω)=0 means oscillations, NOT waves! (See section on Group velocity) 
•  The waves n2=K(ω) are transverse waves 

–  Plug dispersion relation into Λij to see that the eigenvectors are 
perpendicular to k ! 

•  Polarisation vectors of transverse waves are degenerate  
(not unique eigenvector per mode); discussed in detail in Chapter 14. 
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€ 

Kij (ω ) = K(ω)δ ij

€ 

Λ ij =

K − n2 0 0
0 K − n2 0
0 0 K

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

K − n2( )2K = 0

€ 

n2 = K ω( ) →nM ω( )2 ≡ K ω( )
K ω( ) = 0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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K is the square root of  
the refractive index 



Ex 2: Isotropic media with spatial dispersion 
•  Isotropic media with spatial dispersion (e.g. align z-axis: ez=κ)  

•  Dispersion equation 

•  The longitudinal dispersion relation 
–  Dispersion give us a longitudinal wave!  

(eigenvector parallel to k) 

•  Transverse dispersion relation 
–  Again the transverse waves are degenerate. 
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€ 

Kij ω,k( ) = KL ω,k( )κiκ j +KT ω,k( ) δij − κiκ j( ) =

KT 0 0
0 KT 0
0 0 KL

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

€ 

KL ω,k( ) KT ω,k( ) − n2[ ]2 = 0

€ 

KL ω,k( ) = 0

€ 

KT ω,k( ) − n2 = 0
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Ex 3: Birefringent media 
•  Uniaxial and biaxial crystals are birefringent 

–  A light ray entering the crystal splits into two rays;  
the two rays follow different paths through the crystal. 

–  Why? 
•  E.g. study an uniaxial crystal;  

–  align z-axis with the distinctive axis of the crystal 

–  Align coordinates k in x-z plane;  
let θ be the angle between z-axis and k. 
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€ 

κ = sinθ ,  0 ,  cosθ( )
€ 

K ω( ) =

K⊥ ω( ) 0 0
0 K⊥ ω( ) 0
0 0 K|| ω( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 



Birefringent media (cont.) 
•  Dispersion equation in uniaxial media 

•  Two modes, different refractive index (naming conventions differ!) 
–  The (ordinary) O-mode: 

–  The (extraordinary) X-mode: 

•  O-mode: is transverse: 
–  E-field along the crystal plane 

•  X-mode: is not transverse and not longitudinal: 

–  E-field has components both along and perpendicular to crystal plane 
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€ 

K⊥ − n
2( ) K⊥K|| − n

2 K⊥sin
2θ +K|| cos

2θ( )[ ]
2

= 0

€ 

nO
2 = K⊥

€ 

nX
2 =

K⊥K||

K⊥sin
2θ +K|| cos

2θ

€ 

eO (k) = 0 , 1 ,  0( )

€ 

eX (k)∝ K|| cosθ ,   0 ,  K⊥ sinθ( )



Wave splitting 
•  Let a light ray fall on a birefringent crystal with electric field 

components in all directions (x,y,z).  
–  The y-component will enter the crystal as an O-mode! 

(polarisation vector is in y-direction) 
–  The x,z-components as X-modes 

(polarisation vector is in xz-plane) 
•  The O-mode and X-mode have different refractive index (they 

travel with different speed), i.e. the wave will refract differently! 
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Quartz crystals are birefringent. Here the different refraction  
for the O- and X- modes makes you see the lettters twice. 



•  Derivation of the wave equation and definition of wave quantities: 
–  dispersion equation / dispersion relation / refractive index 
–  wave polarization 

•  Some math for wave equations (mainly linear algebra) 
–  relation between damping and antihermitian part of the dielectric tensor 

•  Waves in ideal anisotropic media 
–  birefringent crystals 

•  Group velocity 
•  Plasma oscillations 
•  Elementary plasma waves 

–  Langmuir waves 
–  ion-acoustic waves 
–  high frequency transverse wave 
–  Alfven waves 

•  Wave resonances & cut-offs 

Outline 
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The group velocity 
•  The propagation of waves is a transfer of energy 

–  e.g. the light from the sun transfer energy to earth  
(you feel warm when being in the sun!) 

•  Consider a wave package from an antenna 
–  Is this package travel with the phase velocity? 

Answer: In dispersive media the answer is no!! 

•  The group velocity is often the velocity of information or energy 
–  Warning! There are exceptions; experiments have shown that group velocity 

can go above speed of light, but then the information does not travel as fast 
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The velocity at which the shape of the wave's amplitudes 
(modulation/envelope) moves is called the group velocity 



The velocity of a wave package, 1(2) 
•  The concept of group velocity can be illustrated by the motion of a wave 

package 
–  This motion can easily be identified for a 1D wave package 
–  travelling in a wave mode with dispersion relation: 
–  assuming the wave is almost monocromatic 

•  Let the wave have a Fourier transform  

•  To study how the wave package travel in space-time, take the 
inverse Fourier transform 

13-02-11 28 Dispersive Media, Lecture 5 - Thomas Johnson 

€ 

E ω,k( ) = A(k)δ ω −ωM (k)( ) + A*(k)δ ω +ωM (k)( )

€ 

ω −ωM (k)

€ 

E t,r( ) =
1
4π

dω
−∞

∞

∫ dk
−∞

∞

∫ A(k)δ ω −ωM (k)( )exp ikx − iωt{ } + c.c.

=
1
4π

dk
−∞

∞

∫ A(k)exp ikx − iωM (k)t{ } + c.c.

€ 

ωM (k) ≈ ωM 0 +ω'M 0 (k − k0)   ,     ω'M 0 ≡
dωM 0

dk complex conjugate of the  
first term: below denoted c.c. 



The velocity of a wave package, 2(2) 
•  Now apply the assumption of having “almost chromatic waves” 

–  i.e. if a wave package is centered around x=0 at time t=0, then at time t=T wave 
package has the identical shape but now centred around 

•  Wave package moves with  
a speed called the group velocity : 
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€ 

ωM (k) ≈ ωM 0 +ω'M 0 (k − k0)⇒

E t,x( ) ≈ 1
4π

dk
−∞

∞

∫ A(k)exp ikx − iωM (k)t{ } + c.c.=

=
exp −iωM 0t{ }

4π
dk

−∞

∞

∫ A(k)exp k x −ω'M 0 t( ){ } + c.c.= exp −iωM 0t{ } fcn x −ω'M 0 t( ) + c.c.

€ 

vg =ω'M 0 ≡
dωM 0

dk

t=T 

€ 

ω'M 0T

t=0 

€ 

0

€ 

x =ω'M 0T



Hamilton’s equations of motion 
•  The concept of group velocity can also be studied in terms of rays 
•  How do you follow the path of a ray in a dispersive media? 

–  Hamilton studied this problem in the mid 1800’s and 
developed a particle theory for waves; i.e. like photons!  
(long before Einstein) 

–  Hamilton’s theory is now known as Hamiltonian mechanics  
–  Hamilton’s equations of motion are for a particle: 

–  where 
•  qi =(x,y,z) are the position coordinates 
•  pi =(mvx,mvy,mvz) are the canonical momentum coordinates 
•  The Hamiltonian H is the sum of the kinetic and potential energy 

•  But what are qi, pi and H  for waves? 
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€ 

˙ q i(t) =
∂H(p,q,t)

∂pi

€ 

˙ p i(t) = −
∂H(p,q,t)

∂qi



Hamilton’s equations for rays 
•  What are qi, pi and H  for waves? 

–  The position coordinates qi =(x,y,z)   
–  In quantum mechanics the wave momentum is ħk ;  

in Hamilton’s theory the momentum is pi=(kx,ky,kz) 
–  The Hamiltonian energy H is ωM(k) (energy of wave in quanta ħω), 

i.e. the solution to the dispersion relation for the mode M! 
•  Consequently, the group velocity of a wave mode M is: 

•  The second of Hamilton equations tells us how k changes when 
passing through a weakly inhomogeneous media, i.e. one in 
which the dispersion relation changes slowly as the wave 
propagates through the media, ωM(k,q)    
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€ 

vgM ≡ ˙ q = ∂ωM (k)
∂k

€ 

˙ k = −∂ωM (k,q)
∂q

Warning! Hamiltons equations only work for  
almost homogeneous media. If the media changes  
rapidly the ray description may not work! 



•  High frequency waves:                                       
(response of electron gas; 
discussed shortly) 

–  The group velocity: 

–  The phase velocity: 

–  Note: 
•  phase velocity may be faster than speed of light  
•  group velocity is slower than speed of light  

–  Note: information travel with vg ; cannot travel faster than speed of light 

Examples of group velocities 
•  Let us start with the ordinary light wave 

–  The group velocity: 

–  The phase velocity: 
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Plasma oscillations 
•  Plasma oscillations: “the linear reaction of cold and 

unmagnetised electrons to electrostatic perturbations” 
–  Cold electrons are electrons where the temperature is negligible. 

•  Model equations: 
–  Electrostatic perturbations follow Poisson’s equation 

where                          is the charge density. 
–  Electron response 

–  Ion response; ions are heavy and do not have time to move: 
–  Charge continuity 
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Plasma oscillations 
•  Consider small oscillations near a static equilibrium: 

–  where all the small quantities have sub-index 1. 
•  Next Fourier transform in time and space 
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Plasma oscillations 
•  Equation for the density oscillation is a dispersion equation 

–  Eigen-oscillations appear when 

–  These are plasma oscillations! 
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Thus, plasma oscillation is not a wave since no information is 
propagated by the oscillation! 

•  However, if we let the electrons have a finite temperature the 
plasma oscillations are turned into Langmuir waves! 



Plasma oscillations in the dielectric tensor 
•  Let us first derive plasma oscillations for from the dielectric tensor. 
•  The cold magnetised plasma tensor: 

•  Assume: k parallel to B0 (the z-direction) 

•  Solution                              , or ω=ωpe, i.e. plasma oscillation! 
•  Plasma oscillation can be found  

–  in non-magnetised plasmas (previous page), 
–  E-field along the direction of the magnetic field (see above) and 
–  in almost any media when ωpe is a very high frequency  

(at high frequency electrons respond like free particle) 
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Langmuir waves 
•  Langmuir waves are longitudinal waves in  

a non-magnetised warm plasma. With k in the z-direction 

–  Where KL and KT are given on page 120. 
•  The longitudinal solution is                   where   

•  Neglect ions response and expand in small thermal electron 
velocity (almost cold electrons); use expansion in Eq. (10.30), 
gives approximate dispersion relation for Langmuir waves 
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Polarization of Langmuir waves 
•  Polarization vector ei can be obtained from wave equation when 

inserting the dispersion relation  

•  Thus, the wave damping can be written as 

where 
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Absorption of Langmuir waves 
•  Inserting the dispersion relation and the expression for KL gives the 

energy dissipation rate 

–  Damping (dissipation) is due to Landau damping, i.e. for electrons 
with velocities v such that  

–  Here Nres is proportional to the number of Landau resonant electrons 
•  Damping is small for small & large thermal velocities 

–  Maximum in damping is when  
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Ion acoustic waves 
•  In addition to the Langmuir waves there is another longitudinal 

plasma wave (i.e. KL=0) called the ion acoustic wave. 
•  This mode require motion of both ions and electrons. Assume: 

–  Very hot electrons: vthe >> ω/k , expansions (10.29)  
–  Almost cold ions: vthi << ω/k, expansions (10.30) 

–  Here vs is the sounds speed: 
–  Again, Nres is proportional to the number of Landau resonant electrons 

•  Ion acoustic waves reduces to normal sounds waves for small kλDe  
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Transverse waves - Modified light waves 
•  High frequency wave transverse, ω >>ωpe, behave almost like 

light waves. 
•  Expanding in small ωpe/ω gives: 
•  Transverse dispersion relation: 

•  These waves are very weakly damped;  
–  Phase velocity 

thus no resonant particles and thus no Landau damping! 
–  damping can be obtained from collisions; 

for “collision frequency” = νe  the energy decay rate is 
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Alfven waves (1) 
•  Next: Low frequency waves in a cold magnetised plasma including 

both ions and electrons 

•  These waves were first studied by Hannes Alfvén, here at KTH in 
1940. The wave he discovered is now called the Alfvén wave. 

•  To study these waves we choose: 
    B || ez and k = ( kx , 0 , k|| )   

•  The dielectric tensor for these waves were derived in the previous 
lecture assuming                      (see also home assignment for Friday!) 
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Alfven waves (2) 
•  Wave equation 

–  for nj=ckj /ω	


•  First, if you put in numbers, then P is huge! 
–  Thus, third equations gives E||≈0 (E|| is the E-field along B) 

•  Why is  E||≈0  for low frequency waves have? 
–  electrons can react very quickly to any E|| perturbation (along B) 

and slowly to E-perturbations perpendicular to B  
–  Thus, they allow E-fields to be perpendicular, but not parallel to B! 

•  We are then left with a 2D system: 
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Alfven waves (3) 
•  There are two eigenmodes: 

–  The shear Alfvén wave (shear wave): 

•  Important in almost all areas of plasma physics e.g. fusion plasma stability, 
space/astrophysical plasmas, molten metals and other laboratory plasmas 

•  Polarisation: see exercise! 

–  The compressional Alfvén wave: 
(fast magnetosonic wave) 

•  E.g. used in radio frequency heating of fusion plasmas (my research field) 
•  Polarisation: see exercise! 
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Ideal MHD model for Alfven waves 
 The most simple model that gives the Alfven waves is  
the linearized ideal MHD model for a  

•  quasi-neutral, low pressure plasma – described by fluid velocity v 
•  in a static magnetic field B0    
•  at low frequency and long wave length 
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Wave equation for shear Alfven waves 
 Derivation of wave equation for the shear wave 

1.  Substitude E from Ohms law into Faraday’s law 

2.  Take the time derivative of the equation above and use the 
momentum balance to eliminate the velocity 

3.  Assume the induced current to be perpendicular to B0 

4.  Finally use Ampere’s law to eliminate j   
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Physics of the shear Alfven waves 
•  In MHD the plasma is “frozen into the magnetic field”  

(see course in Plasma Physics) 
–  When plasma move, it “pulls” the field line along with it (eq. 1 prev. page) 
–  The plasma give the field lines inertia, 

thus field lines bend back – like guitar strings! 
–  Energy transfer during wave motion: 

•   B-field is bent by plasma motion; work needed to bend field line 
–   kinetic energy transferred into field line bending  

•  Field lines want to unbend and push the plasma back: 
–   energy transfer from field line bending to kinetic energy 

•  … wave motion! 

•  B-field lines can act like strings: 
–  The Alfven wave propagates along field lines like waves on a string! 
–  Reason: the group velocity always points in the direction of the 

magnetic field! 
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Group velocities of the shear wave 
•  Dispersion relation for the shear Alfven wave: 

–  phase velocity: 

–  group velocity: 

•  wave front moves with vphA , along k = ( kx , 0 , k|| )  
•  wave-energy moves with vgA , along B = ( 0 , 0 , B0 )! 

–  Thus, a shear Alfven waves is “trapped to follow magnetic field lines” 
•  like waves propagating along a string 

–  Note also: 

•  Fast magnetosonic wave                        is not dispersive! 

•  Thus, an external source may excite two Alfven wave modes 
propagating in different directions, with different speed! 
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Resonances, cut offs & evanescent waves 
•  Dispersion relation often has singularities of the form 

•  3 regions with different types of waves 
–   ω < ωcut  & ω > ωres , then k2 > 0   

–   ωcut < ω < ωres , then k2 < 0   

called evanescent waves (growing/decaying) 
•  The transitions to evanescent waves occur at either 

–   resonances ; k  ∞ , i.e. the wave length λ  0  
•  here at  ω > ω0  

–   cut-offs ;  k  0, i.e. the wave length λ  ∞  
•  here at ω < ω0-ω1    
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CMA diagram for cold plasma with ions and electrons 
•  This plasma model can have 

either 0, 1 or 2 wave modes 

•  The modes are illustrated  
in the CMA diagram   

•  3 symbols representing  
different types of inosotropy: 
–  ellipse: 
–  “eight”: 
–  “infinity”: 

 (don’t need to know the details) 

•  When moving in the diagram  
mode disappear/appear at: 
–   resonances ; k  ∞   
–   cut-offs ;  k  0  
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