Wave equations and
properties of waves in ideal media

T. Johnson
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Outline

Derivation of the wave equation and definition of wave quantities:
— dispersion equation / dispersion relation / refractive index
— wave polarization
Some math for wave equations (mainly linear algebra)
— relation between damping and antihermitian part of the dielectric tensor
Waves in ideal anisotropic media
— birefringent crystals (see fig.)
Group velocity
Plasma oscillations
Elementary plasma waves
— Langmuir waves
— lon-acoustic waves
— high frequency transverse wave
— Alfven waves

Wave resonances & cut-offs

Why do we see the letters twice?
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The wave equation in vacuum

Wave equations can be derived for B, E and A.

Waves in vacuum, i.e. no free charge or currents; then ¢=const!
Using Fourier transformed quantities:

E(wk)=iwA(w,k) , Bwk)=ikxA(wk) , ik*A(wk)=0

Ampere’s law:

ik xB+iwE/c’ = u,J =) kx (kxA)+w’/c’A =—u,J

where kx (k xA) =k(k* A) -k|'A
Homogeneous wave equation:

(K - w?/c*)A =0

Solutions exists for: (|k|2 -’ /cz) =0 , the dispersion equation!
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Dispersion relations

« A wave satisfying a dispersion equation is called a Wave Mode.

« Solutions to the dispersion equation can be written as a relation
between w and k called a dispersion relation, e.g.

w =w,, (K)

— Note: here wis the frequency and w, (k) is a function of k

— the sub-index M is for wave mode.

— in general the function w,, is depens on the dielectric response and
therefore is a property of the media

* |n vacuum the dispersion relation reads:

w=zxkl/c = o, k) ==kl/c

l.e. light waves
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Refractive index

« Dispersion relations can be written using the refractive index n

klc  "speed of light"
®  "phase velocity"

n

« A dispersion relation for a wave mode can be rewritten...
— by replacing w* = (Ik | c/n)*

n=n, K)
— or by replacing kK =lwn/cle,
n=n,(w,.e,)
« The dispersion relation for waves in vacuum then reads
n=x=xl

l.e. the phase velocity of vacuum waves is the speed of light

13-02-11 Dispersive Media, Lecture 5 - Thomas Johnson




Plane waves

In this course we only consider infinite domains
— and almost exclusively homogeneous media

Then the wave equation has plane wave solutions

A(x,t) = AI. exp(ik ® x —iwt)

Take the plane wave for all perturbed quantities (in Maxwell's
equation and the equation of motion); then

0
V—=ik, ——-iw
ot
— just as when we do Fourier transforms!

— for linear differential equations: Fourier transforms and plane wave
anzats give the same equation

— e.g. the same wave equations, dispersion relation...!!

The dispersion relation describes the plane waves eigenmodes,
I.e. what wave exists in abscense of external currents or charges
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The wave equation in dispersive media

Ex: Temporal Gauge, ¢=0, the fields are described by A alone
EwKk)=iwA(w,k) , B(wk) =ik xA(w,k)

Ampere’s law:
ik xB+ioE/c’ = uJ =) kx(kx A)+(a)/c)2A = —UyJ

Split J=J . +J,

J =o.A.

ind, i j==j

4, Where J_ . external drive and J.

ext 1

.4 1S Induced parts

ext

where «;; is polarisation response tensor
Inhomogeneous wave equation: /
2

Wave operator

2
AA, = ’“‘;Cz Jopi  where A, = %(kik  -IkPs,)+ K,

J

1 I/
Dielectric tensor: K, =6, +——a, kxkx..

ij
w°E,
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Dispersion relations in dispersive media

« Homogeneous wave equation:
Ay(0.k)A (0k)=0

(the book includes only the Hermitian part AY, but this is a technicality
At the end of this calculations we get the same dispersion relation)

* Solutions exist if and only if:
A (0k) =det| A, (0 k)| =0

this is the dispersion equation.
* From this equation the dispersion relation can be derived

w =w,, (K)

where
A (o, (k).k)=0
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Non-linear and linear eigenvalue problems *

« This wave equation is a non-linear eigenvalue problem, to see this...

« Remember linear eigenvalue problems:
for a matrix A find the eigenvalues A and the eigenvectors x such that:

Ax -Ax = (A - M)x =0
or alternatively
(A, =28, )x, = A, (W), =0

Thus for the linear eigenvalue problem A; is linear in 4.
 Our wave equation has the same form, except Aj(w) is non-linear in w .

* Thus, we are looking for the eigenvalues w,, and the eigenvectors A to
the equation

Ay, KA, =0

Exercise: show that when K;=K(k), the wave equation is a linear eigenvalue problem in WP,
However, inertia in Eq. of motion (when deriving media responce) gives K;; =K (w,k).
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Polarization vector

« So the wave equation is an eigenvalue problem
— The eigenvalue is the frequency
— The normalised eigenvector is called the polarisation vector, e, (k)

Aw,, (k) k)
‘A(WM (k)’k)‘

e, (k)= the direction of the A-field!

— Note: the A-field is parallel to the E-field
* Note: the polarisation vector is complex — what does this mean?
— e.g. take e;,=(2,1,0)/5"2, then the vector potential is

A(t,x)xRe{ [ 2,7, 0] exp(ik- x +iwn)} =
= [ 2cos(k- x +wr) , cos(k- x+wr+90%) ,0 ]

— The difference in “phase” of ¢,,; and e,,, (in complex plane; one being
real and the other imaginary) makes 4, and 4, oscillate 90° out of
phase — elliptic polarisation!
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Longitudinal & Transverse waves

Definition:
Longitudinal & Transverse waves
have e,, parallel & perpendicular to k

« Examples:
» Light waves have E || A perpendicular to k, i.e. a transverse wave

« Sounds waves (wave equation for the fluid velocity v)
have v || k, I.e. a longitudinal wave.
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Linear algebra: cofactors *

* An (ij):th cofactor, 4; of a matrix A is the determinant of the “reduced”
matrix, obtained by removing row i and columnj , times (-1)"*/

 In tensor notation (you don’t have to understand why!):

1 A12 A13 A A
)\'ai = _gabcgilebjAcl €.g. 7\’21 = (_1)i+j detff—* = (_1)i+j N :
2 £ A A A32 A33
32 33
 Alternative definition for cofactors: T
reduced matrix
Aik)\‘kj = A‘Sij

— Thus, for A=0 each column (4;;, A5, A5 )" is an eigenvector!
* |t can be shown that

3k
Ay = 1k € mi€ i

a

where A, is the trace of A and ¢,,; are the normalised eigenvectors
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Linear algebra: determinants

The determinant can be written as (Melrose page 139)

abc*™ ijl

det[A]=ée A AL,

Derivatives (note that the three derivates are identical)

é)Acl —)\. é)Abj

abc™ ijl Or,x bj Or,x

0 1
—det| A = — A A,
é)x e[ (X)] 28 € ai” “bj

Cofactors A,/

Special case; take derivative w.r.t. the one tensor component

J oA
Kdet[A(AH,AIZ,AZI,AM...)] = ha 2= 2y

] Yy

0 .0

ni~ jm
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Linear algebra: Taylor expansion

 The determinant of this matrix is a function of the matrix
components

det|A] = f(A, LA,

* Perturbing the matrix components A, — A +0A,; we can then
Taylor expand

det| A+8A] = f(A, +dA,) =

J -
= f(A))+ aTijf(AU)aAij +O(ON°) =

-1 0
=det|A]+ aTdet[A]éAlj +O(BN) =

ij

=det[ A]+ 1, 0A,; + O(BA?)
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Damping of waves

Next we’ll show that for low amplitude waves

— the anti-Hermitian part of the dielectric tensor K#; describes wave
damping, i.e. the decay of the wave

— the Hermitian part provide the dispersion relation
Consider a plane wave with complex frequency w+iw,

A(x,t) = Ai exp(a),t)exp(ik *X —iwt)

— The wave amplitude decays at a rate -,
— Note: the wave energy (~|EJ’) decays at a rate y=—2w,

The dispersion relation

det| A + i, k)| = det| A%} (0 +i0, K) + A} (0 +iw, k)| =0

Exercise: show that A4=K“
To simplify this further we need to assume weak damping ...

13-02-11
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Weak damping of waves

Assume the damping to be weak by:
K; =0 and o, —=0

Also assume w,~ K4

— Interpretation of the relation w,~ K4 : reduce K4 by factor, then w, reduces by
the same factor, thus the they go to zero together

Expand in small w;, :

A, ((o +im, ,k) =~ A, (0.k)+io, ai/\,.j(m,k) +0(w,”)
m

d
~ A (0k)+ K (oK) +iw, iA’;’ (w,k) +i, — K% (w.k) + O(w,”)
‘ oW . do 7
o \"" \
15t order in Both small, i.e. ~w?

Dispersion equation then reads

N (w,k
det[A‘Z+5AU]=O , 6Al.j =K;}‘(w,k)+ia), Jé)(;) )

+O0(w,”)

— Expand the determinant in small O\,
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Weak damping of waves

The dispersion equation (repeated from previous page):

ON" (w.k
det| A} +0A,|=0 . 0A, =K} (k) +io, ”(9(2) )

+O0(w,”)
Taylor expand the determinant
det| Alj +0A, | = det| A7 |+ A, 2, + O[oA,?)

— where A; are the cofactors of A,"(w k)

NOTE: (see “Linear Algebra” pages): )Lljé)iAg(a),k) = aidet[Aﬂ;‘T]
a a

The dispersion equation can then be written as

det[AZ’. (a),k)] + L,K (0 k) +iw, %det[/\%’.(a),k)] +0(w,”) =0
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Weak damping of waves

Note that the dispersion equation with weak damping has
both real and imaginary parts

— The matrix of cofactors is Hermitian, thus A, K, is imaginary
— Also: det(A,;/") is real

0 = Refdet{ A K)]} ~ det| A (0 k)] + O, ")

o < e A} =< ) 0, de Ak} O

The first equation gives dispersion relation for real frequency
w =w, (k) such that: det[A’;(wM (k),k)] +0(w,”) =0

and the second equations gives the damping rate

ir K (0, K)k)

W, = +0(a),2)

e[ A" (ak)|

dw w =0 (k)
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Energy dissipation rate, y,,

« Alternatively we can form the energy dissipation rate,
l.e. rate at which the wave energy is damped y, = - 2w,

— express the cofactor in terms of polarisation vectors A, = A,e,.e,,

Y = =2i0,, (K)R,, (&) e}, (K)K (o, (k) K)e,,, ()}
) = —
Vector Matrix Vector
Note: this is related to the hermitian part of the conductivity, 05 o iK;?

ES o A *k H
Yy & eMi[lKij ]eMj X €0, €y

— here R,, is the ratio of electric to total energy

RM (k) — > )\'ss(a)’k) \
w— det[A’;’m (w,k)]
L dw Jo=0 (k)

and plays an important role in Chapter 15
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Determinant and the cofactors in the general case

*

Explicit forms for dispersion equation and cofactors
Write A in terms of the refractive index n and

the unit vector along k, i.e. x =k /K]

C_

A

ij

- (k- K8, )+ K, — Ay =n*(kx; -8,)+K,

Brute force evaluation give

det|A]=n*kx K, —n(KKKK -kk KK )+det[K]

A U Rt / A C S AR A Ay
and the cofactors (related to the eigenvector) are

A..~n KK, —n (Kl.KjK -0, KKyKrS—KiKSKS]—KKK)

ijor s jiis

+106,(K) -K,.K,)+K.K, +K K,
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Ex. 1: Isotropic, not spatially dispersive, media

Isotropic, not spatially dispersive, media K (w) = K(w)0,

Place z-axis alongk: A 0
(n = refractive index) L0 0 K,

K is the square root of
the refractive index

Dispersion equation : (K — nz)zK =0

Dispersion relations: {

— Note: K(w)=0 means oscillations, NOT waves! (See section on Group velocity)
The waves n’=K(w) are transverse waves

— Plug dispersion relation into Al.j to see that the eigenvectors are
perpendicular to k !

Polarisation vectors of transverse waves are degenerate
(not unique eigenvector per mode); discussed in detail in Chapter 14.
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Ex 2: Isotropic media with spatial dispersion

Isotropic media with spatial dispersion (e.g. align z-axis: e_=x)

K, (0k) =K (0.k)xx; +K (0.k)(d, -xx,)=[ 0 K™ 0

Dispersion equation

K (0, k)K" (w,k) -n*] =0

The longitudinal dispersion relation K*(w,k) =0

— Dispersion give us a longitudinal wave!
(eigenvector parallel to k)

Transverse dispersion relation K" (w,k)-n* =0
— Again the transverse waves are degenerate.

K' 0 0

0 0 K"

13-02-11
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Ex 3: Birefringent media

Uniaxial and biaxial crystals are birefringent

— A light ray entering the crystal splits into two rays;
the two rays follow different paths through the crystal.

— Why?

E.g. study an uniaxial crystal, Divergent
Waves

— align z-axis with the distinctive axis of the crystal

(K(w) O 0 )
Kw)=] 0 K(w) 0
. 0 0 K,(o) ‘
Wﬁ Op;;

— Align coordinates k in x-z plane;
let 6 be the angle between z-axis and k.

K =(sin@,0 , cos)

13-02-11 Dispersive Media, Lecture 5 - Thomas Johnson 23




Birefringent media (cont.)

Dispersion equation in uniaxial media
2 2 2 2 2
(K, - n*)| KK, - n*(K,sin* 6 + K, cos*0)| =0

Two modes, different refractive index (naming conventions differ!)
— The (ordinary) O-mode: nO2 =K,
KK,
K sin’ 0 + K, cos’ 0

— The (extraordinary) X-mode: nX2 =

O-mode: is transverse: e, (k) =(0 , 1, 0)
— E-field along the crystal plane

X-mode: is not transverse and noft longitudinal:
e, (k) « (K, cosf , 0, K, sin6)

— E-field has components both along and perpendicular to crystal plane
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Wave splitting

« Let a light ray fall on a birefringent crystal with electric field
components in all directions (x,y,z).

— The y-component will enter the crystal as an O-mode!
(polarisation vector is in y-direction)

— The x,z-components as X-modes
(polarisation vector is in xz-plane)

 The O-mode and X-mode have different refractive index (they
travel with different speed), i.e. the wave will refract differently!

Quartz crystals are birefringent. Here the different refraction
for the O- and X- modes makes you see the lettters twice.

13-02-11
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Outline

Derivation of the wave equation and definition of wave quantities:
— dispersion equation / dispersion relation / refractive index
— wave polarization
Some math for wave equations (mainly linear algebra)
— relation between damping and antihermitian part of the dielectric tensor
Waves in ideal anisotropic media
— birefringent crystals
Group velocity
Plasma oscillations
Elementary plasma waves
— Langmuir waves
— lon-acoustic waves
— high frequency transverse wave
— Alfven waves
Wave resonances & cut-offs
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The group velocity

« The propagation of waves is a transfer of energy

— e.g. the light from the sun transfer energy to earth
(you feel warm when being in the sun!)

« Consider a wave package from an antenna AMW\[\MNW\,\N\NM
— Is this package travel with the phase velocity?
Answer: In dispersive media the answer is no!!

~“ANNNASANNNNANANNNAAANANA~

The velocity at which the shape of the wave's amplitudes
(modulation/envelope) moves is called the group velocity

« The group velocity is often the velocity of information or energy

— Warning! There are exceptions; experiments have shown that group velocity
can go above speed of light, but then the information does not travel as fast
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The velocity of a wave package, 1(2)

The concept of group velocity can be illustrated by the motion of a wave
package

— This motion can easily be identified for a 1D wave package

— travelling in a wave mode with dispersion relation: w —w,, (k)

— assuming the wave is almost monocromatic
dw,,,

0, (=w,,+0, (k-k) , ©, =
m (K) MO mo 0) MO dk complex conjugate of the

i first term: below denoted c.c.
Let the wave have a Fourier transform P

E(w.k) = A0 - ,, (k) + A" ()30 + 0, (K))

To study how the wave package travel in space-time, take the
inverse Fourier transform

E(t,r) = ﬁjdmj dkA(K)S(o - o, (k))expfikx — it} +c.c.

= ﬁ j dkA(k) exp{ikx -1, (k)t} +cC.C.
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The velocity of a wave package, 2(2)

* Now apply the assumption of having “almost chromatic waves”

w,k)=w0,,+0',,k-k)=

E(t,x) ~ ﬁ fdkA(k)eXp{ikx —iW,, (k)t} +C.C.=

= exp{;i;)mt} :deA(k)eXp{k(x -m',, t)} +c.C.= exp{—imMOt}fcn(x -, t) +C.C.

— i.e. if a wave package is centered around x=0 at time =0, then at time =T wave
package has the identical shape but now centred around x =w',,, 7T

t=0 T t=T
— W
| >
0

] S
| [ 4

]
®',0 T

 Wave package moves with

a speed called the group velocity : v, =y, =

dw,,,
dk
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Hamilton’s equations of motion

« The concept of group velocity can also be studied in terms of rays
 How do you follow the path of a ray in a dispersive media?

— Hamilton studied this problem in the mid 1800’s and
developed a particle theory for waves; i.e. like photons!
(long before Einstein)

— Hamilton’s theory is now known as Hamiltonian mechanics
— Hamilton’s equations of motion are for a particle:

. JH(p,q,t)
qi(t) =
op;
. JH(p,q,t)
p(t) = - 1
g,

— where
* ¢,=(x,y,z) are the position coordinates
* p;,=(mv,mv,mv,) are the canonical momentum coordinates
« The Hamiltonian H is the sum of the kinetic and potential energy

« But what are ¢, p,and H for waves?

13-02-11 Dispersive Media, Lecture 5 - Thomas Johnson
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Hamilton’s equations for rays *

 What are g, p,and H for waves?
— The position coordinates q; =(x,y,z)

— In quantum mechanics the wave momentum is hk ;
in Hamilton’s theory the momentum is p=(k & ,k)

— The Hamiltonian energy H is wy,(k) (energy of wave in quanta hw),
i.e. the solution to the dispersion relation for the mode M!

« Consequently, the group velocity of a wave mode M is:
dw,, (K)
dk

VgM Eq=

« The second of Hamilton equations tells us how k changes when
passing through a weakly inhomogeneous media, i.e. one in
which the dispersion relation changes slowly as the wave
propagates through the media, w,/(k,q)

. &a)M (k,q) Warning! Hamiltons equations only work for
k=- almost homogeneous media. If the media changes
0
q rapidly the ray description may not work!
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Examples of group velocities

» Let us start with the ordinary light wave w, (K) = ck =c/kk,

l

J J
— The group velocity: vV, = o'?k w, (K) = Eck CK,
o _w, (k)
— The phase velocity: v ., ; = P K; =CK;

. 2
- High frequency waves: o, (k)’ =c**+w,
(response of electron gas;
discussed shortly)

— The group velocity: v, = —\/oopez +c’k’ = K,
ok, O, (ko) +1

. 5 ) 1/2
— The phase velocity: Vv ;. =(a)pe /(kc) +1) CK,

— Note:
* phase velocity may be faster than speed of light
« group velocity is slower than speed of light
— Note: information travel with v, ; cannot travel faster than speed of light
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Plasma oscillations

« Plasma oscillations: “the linear reaction of cold and
unmagnetised electrons to electrostatic perturbations”

— Cold electrons are electrons where the temperature is negligible.

 Model equations:
— Electrostatic perturbations follow Poisson’s equation

Ap =ple,
where p =g¢.n.+q,n,is the charge density.
— Electron response

o
m —<=qV
© ot 9.V P

— lon response; ions are heavy and do not have time to move: v, =0
— Charge continuity
op

— V=0 where J=gny;+q.nyv,
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Plasma oscillations

Consider small oscillations near a static equilibrium:

_ Non-linear
vV (1) =0+v,(?) (small term)
¢(t) = O + ¢1(t) — J = Qe(neOVel + nelvel) = Qeneovel
ne(t) =n0+nel(t) p:qenel
n(t)=ny,/q,+0
— where all the small quantities have sub-index 1.
Next Fourier transform in time and space
_k2¢1 =q,n, /¢ -
—iom v, = iq K, - 0? =4, legm)]n,, =0
-io(g,.n,)+ik (g,n,v,) =0 = (Dpez

o, Is the plasma frequency
(see previous lecture)
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Plasma oscillations

« Equation for the density oscillation is a dispersion equation
[w2 — mpez]nel =0

— Eigen-oscillations appear when

— These are plasma oscillations!

J

+—qw =0
ok, "

* Note: v, =

Thus, plasma oscillation is not a wave since no information is
propagated by the oscillation!

 However, if we let the electrons have a finite temperature the
plasma oscillations are turned into Langmuir waves!
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Plasma oscillations Iin the dielectric tensor

Let us first derive plasma oscillations for from the dielectric tensor.

The cold magnetised plasma tensor: (S —iD 0)
K=|iD § 0
\ 0] 0 P)

Assume: k parallel to B, (the z-direction)
(S-n®> -iD 0
dett iD S-n> 0|=0
. 0 0 P
Solution P =1-w"/w; =0, or w=w,,, i.e. plasma oscillation!
Plasma oscillation can be found

— in non-magnetised plasmas (previous page),

— E-field along the direction of the magnetic field (see above) and

— in almost any media when w,, is a very high frequency
(at high frequency electrons respond like free particle)
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Langmuir waves

« Langmuir waves are longitudinal waves in
a hon-magnetised warm plasma. With k in the z-direction

(K, 0 0) (K, -n> 0 0 )
K={0 K, 0| == detf O K.-n> 0|=0
\ 0 0 K, \ 0 0 Ly
— Where K, and Ky are given on page 120. —Vthi = W

« The longitudinal solution is %{KL} ~0 where

K, =1+zkziL2 1= g0y +iNmye™

l Di

= )\’Di = Vthi/wpi

Yi Ea)/zl/zkvth'

l

* Neglect ions response and expand in small thermal electron
velocity (almost cold electrons); use expansion in Eq. (10.30),
gives approximate dispersion relation for Langmuir waves

w0’ =w, (k)= oupe2 +3k*v, *  Lettingv, =0 give
plasma oscillations!
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Polarization of Langmuir waves

Polarization vector e; can be obtained from wave equation when
inserting the dispersion relation K, =K, =0

(K, -n*> 0  0)e¢) (e,\ (0)
0 K,-n> Ofe,|=0 == |c |=|0| == e =0,
. 0 0 OAey, &)\

* Thus, the wave damping can be written as
1, = =2i0, (KR, (K){e;, (K)K (o, (k) K)e, (K)}
= _ZiWL (k)RL (k)K% (CUL (k)’k)

=-2iw, (k)RL (k)C«VS{KL ((UL (k)’k)}

1 IRe[K, (0,k)]

where W
R, (k) dw

w=w; (k)
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Absorption of Langmuir waves

* Inserting the dispersion relation and the expression for K, gives the
energy dissipation rate

1/2 4
T a)Pe 2 2
Y, = (5) vthe3k3 N, , where N = exp[—v [2v,, ]

v=w, (k)/k

— Damping (dissipation) is due to Landau damping, i.e. for electrons
with velocities v such that w, (k) —kv =0

— Here N is proportional to the number of Landau resonant electrons

res

« Damping is small for small & large thermal velocities

kv, Jo, (k)0 == v, ~ ™ v, Cexpl-v?/2v,}| =0

Vih

kvl (k) =00 = Ve~ " v, exp[-0] =0

tne

— Maximum in damping is when v, =w, (k)/k
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lon acoustic waves

* |n addition to the Langmuir waves there is another longitudinal
plasma wave (i.e. K, =0) called the ion acoustic wave.

« This mode require motion of both ions and electrons. Assume:
— Very hot electrons: v,,, >> w/k , expansions (10.29)
— Almost cold ions: v,,; << w/k, expansions (10.30)

- kv
w=w, (k)=

| 2 \/1+k2)»26
S‘t{KL}=1+k2)%e —OZ;’Z — _ D

1/2 3
— T V. w (k)
electron ‘i_(;;' YL = (E) w,, (k) "‘( ) N,
- vthe kvthe

. i 2
— Here v, is the sounds speed: v, =w A}, =+/T/m,
— Again, N, is proportional to the number of Landau resonant electrons
* lon acoustic waves reduces to normal sounds waves for small k4,

W = wSound(k) =~ kvs
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Transverse waves - Modified light waves

High frequency wave transverse, o >>w,,, behave almost like
light waves.

Expanding in small w,/w gives: K, =1-w’/w
Transverse dispersion relation:

2
pe

2

K,-n*=0 == o’ =0,k)’=0,"+c’k

These waves are very weakly damped;
— Phase velocity

2 2 2 2 2
v, =¢+w, k" >c

thus no resonant particles and thus no Landau damping!

— damping can be obtained from collisions;
for “collision frequency” = v, the energy decay rate is
2
pe

)/T(k) = ve 2
00,
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Alfven waves (1)

Next: Low frequency waves in a cold magnetised plasma including
both ions and electrons

These waves were first studied by Hannes Alfvén, here at KTH in
1940. The wave he discovered is now called the Alfvén wave.

To study these waves we choose:
Blle, andk= (%, 0, k)

The dielectric tensor for these waves were derived in the previous
lecture assuming w << w ,,w ,i (see also home assignment for Friday!)

ci?

i “ozmj”j >
(S 0 0) S=c — =—> V,="Alfvén speed”
B V,
K=0 § O -
2
\O 0 P/ PN_E
mso
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Alfven waves (2)

Wave equation (S-n? 0 YE\ (0

_nllnx X
— for n=ck;/w 0 S _ 2 0 Ey 0

| —myn, 0 P - nxz/\E”/ \0)

First, if you put in numbers, then P is huge!
— Thus, third equations gives E =0 (E, is the E-field along B)
Why is E,=0 for low frequency waves have?

— electrons can react very quickly to any E| perturbation (along B)
and slowly to E-perturbations perpendicular to B

— Thus, they allow E-fields to be perpendicular, but not parallel to B!
We are then left with a 2D system:
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Alfven waves (3)

« There are two eigenmodes:

(E_\ (0)
E,|=|0| == det|A,|=(5-n%)(s-n)=0
\ 0 )\

— The shear Alfvén wave (shear wave): § = n“2 , or w, =kV,

* Important in almost all areas of plasma physics e.g. fusion plasma stability,
space/astrophysical plasmas, molten metals and other laboratory plasmas

* Polarisation: see exercise!

— The compressional Alfvén wave: S = n?
(fast magnetosonic wave)

, or w,=kV,

« E.g. used in radio frequency heating of fusion plasmas (my research field)
« Polarisation: see exercise!
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Ideal MHD model for Alfven waves I

The most simple model that gives the Alfven waves is
the linearized ideal MHD model for a

e quasi-neutral, low pressure plasma — described by fluid velocity v
* in a static magnetic field B,
+ at low frequency and long wave length

dav

nm— = jx B, Momentum balance
[ (sum of electron and ion momentum balance; n g, v,+n.q.v,=J)

E+vxB,=0 Ohmslaw
(electron momentum balance when m,>0)

oB
V xE =—-— Faraday’s law

ot
VxB=uj Ampere’s law
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Wave equation for shear Alfven waves *

Derivation of wave equation for the shear wave
1. Substitude E from Ohms law into Faraday’s law
oB
ot

2. Take the time derivative of the equation above and use the
momentum balance to eliminate the velocity

jxB o’B
Vx((‘]x O)XBO)=—2
mn ot
3. Assume the induced current to be perpendicular to B,

Mij=—az—lj Note : M=
mn ot mn

Vx(va0)=—

MOVA2

4. Finally use Ampere’s law to eliminate j

L, 0B
V x (V X B) +V, ? ? = Wave equation with phase & group velocity V,
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Physics of the shear Alfven waves *

* In MHD the plasma is “frozen into the magnetic field”
(see course in Plasma Physics)
— When plasma move, it “pulls” the field line along with it (eq. 1 prev. page)

— The plasma give the field lines inertia,
thus field lines bend back — like guitar strings!

— Energy transfer during wave motion:
« B-field is bent by plasma motion; work needed to bend field line
— kinetic energy transferred into field line bending
* Field lines want to unbend and push the plasma back:

— energy transfer from field line bending to kinetic energy
e ... wave motion!

« B-field lines can act like strings:

— The Alfven wave propagates along field lines like waves on a string!

— Reason: the group velocity always points in the direction of the
magnetic field!
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Group velocities of the shear wave

- Dispersion relation for the shear Alfven wave: w,(K) =V, k, =V, k*B/IB |

: VAkII k
—_ - = = —_—
phase velocity: v ,, = % P /;/rvg
<N\ M
. a B // ,'/ 7 B
— group velocity: Vou = —(iVAkH) = iVA — N\ LN
ak |B| w /’/ .
P /'/
» wave front moves with v, , , along k= (., 0, k) ‘ \k
* wave-energy moves with Vo alongB=(0, 0, B,)! -

— Thus, a shear Alfven waves is “trapped to follow magnetic field lines”
 like waves propagating along a string
— Note also:

‘VgA‘ =V, z‘vphA‘

 Fast magnetosonic wave w.(k) =V, k is not dispersive!
k

Veri = Vouri = VA o

k

« Thus, an external source may excite two Alfven wave modes
propagating in different directions, with different speed!
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Resonances, cut offs & evanescent waves

» Dispersion relation often has singularities of the form

k> ~1+ @ L% , W, =0 -, Resonance
a) - wres w - a)res
« 3 regions with different types of waves 4l
— 0<w,, & w>w,,then k*>0 |
E ~ E exp(ilk|x) + E, exp(~ilk|x) 2| A\ K (w)
I 2 Cut-off
Wy < O < Wyps , then k2 <0 ok — = \____
E ~ E exp(lk|x) + E, exp(—|k|x) :
called evanescent waves (growing/decaying) 0 1 \
 The transitions to evanescent waves occur at either fe"gai';‘:‘sce"t

— resonances ; k = «  i.e. the wave length A = 0
* here at w> w,

— cut-offs ; k= 0, i.e. the wave length A = «
* here at w < wy~w,
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CMA diagram for cold plasma with ions and electrons

This plasma model can have
either 0, 1 or 2 wave modes

The modes are illustrated 3
in the CMA diagram
Q=0
3 symbols representing ¢
different types of inosotropy: !
. " S
— ellipse: O 1Q,1/0
— “eight™ 8 .

— “infinity”: oo ey
(don’t need to know the details)
When moving in the diagram ¥1=©

mode disappear/appear at:
— resonances ; k = «

CMA diagram

Alfven modes

— cut-offs: k=0 0
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