Wave equations and properties of waves in ideal media

T. Johnson

wharworwhownon

Outline

- Derivation of the wave equation and definition of wave quantities:
- dispersion equation / dispersion relation / refractive index
- wave polarization
- Some math for wave equations (mainly linear algebra)
- relation between damping and antihermitian part of the dielectric tensor
- Waves in ideal anisotropic media
- birefringent crystals (see fig.)
- Group velocity
- Plasma oscillations
- Elementary plasma waves
- Langmuir waves
- ion-acoustic waves
- high frequency transverse wave

Why do we see the letters twice?

- Alfven waves
- Wave resonances \& cut-offs

The wave equation in vacuum

- Wave equations can be derived for \mathbf{B}, \mathbf{E} and \mathbf{A}.
- Waves in vacuum, i.e. no free charge or currents; then $\phi=$ const! Using Fourier transformed quantities:

$$
\mathbf{E}(\omega, \mathbf{k})=i \omega \mathbf{A}(\omega, \mathbf{k}) \quad, \quad \mathbf{B}(\omega, \mathbf{k})=i \mathbf{k} \times \mathbf{A}(\omega, \mathbf{k}) \quad, \quad i \mathbf{k} \cdot \mathbf{A}(\omega, \mathbf{k})=0
$$

- Ampere's law:

$$
i \mathbf{k} \times \mathbf{B}+i \omega \mathbf{E} / c^{2}=\mu_{0} \mathbf{J} \Rightarrow \mathbf{k} \times(\mathbf{k} \times \mathbf{A})+\omega^{2} / c^{2} \mathbf{A}=-\mu_{0} \mathbf{J}
$$

where $\mathbf{k} \times(\mathbf{k} \times \mathbf{A})=\mathbf{k}(\mathbf{k} \cdot \mathbf{A})-|\mathbf{k}|^{2} \mathbf{A}$

- Homogeneous wave equation:

$$
\left(\left.\mathbf{k}\right|^{2}-\omega^{2} / c^{2}\right) \mathbf{A}=0
$$

- Solutions exists for: $\left(|\mathbf{k}|^{2}-\omega^{2} / c^{2}\right)=0$, the dispersion equation!

Dispersion relations

- A wave satisfying a dispersion equation is called a Wave Mode.
- Solutions to the dispersion equation can be written as a relation between ω and \mathbf{k} called a dispersion relation, e.g.

$$
\omega=\omega_{M}(\mathbf{k})
$$

- Note: here ω is the frequency and $\omega_{M}(\mathbf{k})$ is a function of \mathbf{k}
- the sub-index M is for wave mode.
- in general the function ω_{M} is depens on the dielectric response and therefore is a property of the media
- In vacuum the dispersion relation reads:

$$
\omega= \pm|\mathbf{k}| / c \Rightarrow \omega_{M \pm}(\mathbf{k})= \pm|\mathbf{k}| / c
$$

i.e. light waves

Refractive index

- Dispersion relations can be written using the refractive index n

$$
n \equiv \frac{|\mathbf{k}| c}{\omega} \sim \frac{\text { "speed of light" }}{\text { "phase velocity" }}
$$

- A dispersion relation for a wave mode can be rewritten...
- by replacing $\omega^{2}=(|\mathbf{k}| c / n)^{2}$

$$
n \equiv n_{M}(\mathbf{k})
$$

- or by replacing $\mathbf{k}=|\omega n / c| \mathbf{e}_{k}$

$$
n \equiv n_{M}\left(\omega, \mathbf{e}_{k}\right)
$$

- The dispersion relation for waves in vacuum then reads

$$
n= \pm 1
$$

i.e. the phase velocity of vacuum waves is the speed of light

Plane waves

- In this course we only consider infinite domains
- and almost exclusively homogeneous media
- Then the wave equation has plane wave solutions

$$
A_{i}(\mathbf{x}, t)=\hat{A}_{i} \exp (i \mathbf{k} \cdot \mathbf{x}-i \omega t)
$$

- Take the plane wave for all perturbed quantities (in Maxwell's equation and the equation of motion); then

$$
\nabla \rightarrow i \mathbf{k}, \frac{\partial}{\partial \mathrm{t}} \rightarrow-i \omega
$$

- just as when we do Fourier transforms!
- for linear differential equations: Fourier transforms and plane wave anzats give the same equation
- e.g. the same wave equations, dispersion relation...!!

The dispersion relation describes the plane waves eigenmodes, i.e. what wave exists in abscense of external currents or charges

The wave equation in dispersive media

- Ex: Temporal Gauge, $\phi=0$, the fields are described by \mathbf{A} alone

$$
\mathbf{E}(\omega, \mathbf{k})=i \omega \mathbf{A}(\omega, \mathbf{k}) \quad, \quad \mathbf{B}(\omega, \mathbf{k})=i \mathbf{k} \times \mathbf{A}(\omega, \mathbf{k})
$$

- Ampere's law:

$$
i \mathbf{k} \times \mathbf{B}+i \omega \mathbf{E} / c^{2}=\mu_{0} \mathbf{J} \Longrightarrow \mathbf{k} \times(\mathbf{k} \times \mathbf{A})+(\omega / c)^{2} \mathbf{A}=-\mu_{0} \mathbf{J}
$$

- Split $\mathbf{J}=\mathbf{J}_{\text {ext }}+\mathbf{J}_{\text {ind }}$, where $\mathbf{J}_{\text {ext }}$ external drive and $\mathbf{J}_{\text {ind }}$ is induced parts

$$
J_{\mathrm{ind}, i}=\alpha_{i j} A_{j}
$$

where $\alpha_{i j}$ is polarisation response tensor

- Inhomogeneous wave equation:

$$
\Lambda_{i j} A_{j}=-\frac{\mu_{0} c^{2}}{\omega^{2}} J_{\exp , i}
$$

$$
\text { where } \Lambda_{i j}=\frac{c^{2}}{\omega^{2}} \underbrace{k_{i} k_{j}-|\mathbf{k}|^{2} \delta_{i j}})+K_{i j}
$$

Dielectric tensor: $K_{i j}=\delta_{i j}+\frac{1}{\omega^{2} \varepsilon_{0}} \alpha_{i j}$
$\mathbf{k} \times \mathbf{k} \times \ldots$

Dispersion relations in dispersive media

- Homogeneous wave equation:

$$
\Lambda_{i j}(\omega, \mathbf{k}) A_{j}(\omega, \mathbf{k})=0
$$

(the book includes only the Hermitian part Λ^{H}, but this is a technicality At the end of this calculations we get the same dispersion relation)

- Solutions exist if and only if:

$$
\Lambda(\omega, \mathbf{k}) \equiv \operatorname{det}\left[\Lambda_{i j}(\omega, \mathbf{k})\right]=0
$$

this is the dispersion equation.

- From this equation the dispersion relation can be derived

$$
\omega=\omega_{M}(\mathbf{k})
$$

where

$$
\Lambda\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right)=0
$$

Non-linear and linear eigenvalue problems

- This wave equation is a non-linear eigenvalue problem, to see this...
- Remember linear eigenvalue problems:
for a matrix \mathbf{A} find the eigenvalues λ and the eigenvectors \mathbf{x} such that:

$$
\mathbf{A} \mathbf{x}-\lambda \mathbf{x}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0
$$

or alternatively

$$
\left(A_{i j}-\lambda \delta_{i j}\right) x_{j}=\Lambda_{i j}(\lambda) x_{j}=0
$$

Thus for the linear eigenvalue problem $\Lambda_{i j}$ is linear in λ.

- Our wave equation has the same form, except $\Lambda_{i j}(\omega)$ is non-linear in ω.
- Thus, we are looking for the eigenvalues ω_{M} and the eigenvectors \mathbf{A} to the equation

$$
\Lambda_{i j}\left(\omega_{M}, \mathbf{k}\right) A_{j}=0
$$

- Exercise: show that when $K_{i j}=K_{i j}(\mathbf{k})$, the wave equation is a linear eigenvalue problem in ω^{2}. However, inertia in Eq. of motion (when deriving media responce) gives $K_{i j}=K_{i j}(\omega, \mathbf{k})$.

Polarization vector

- So the wave equation is an eigenvalue problem
- The eigenvalue is the frequency
- The normalised eigenvector is called the polarisation vector, $\mathbf{e}_{M}(\mathbf{k})$

$$
\mathbf{e}_{M}(\mathbf{k})=\frac{\mathbf{A}\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right)}{\left|\mathbf{A}\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right)\right|} \quad \text { the direction of the } \mathbf{A} \text {-field! }
$$

- Note: the A-field is parallel to the E-field
- Note: the polarisation vector is complex - what does this mean?
- e.g. take $\mathbf{e}_{M}=(2, \mathrm{i}, 0) / 5^{1 / 2}$, then the vector potential is

$$
\begin{aligned}
& \mathbf{A}(t, \mathbf{x}) \propto \operatorname{Re}\{[2, i, 0] \exp (i \mathbf{k} \cdot \mathbf{x}+i \omega t)\}= \\
& \quad=\left[2 \cos (\mathbf{k} \cdot \mathbf{x}+\omega t), \cos \left(\mathbf{k} \cdot \mathbf{x}+\omega t+90^{\circ}\right), 0\right]
\end{aligned}
$$

- The difference in "phase" of $e_{M 1}$ and $e_{M 2}$ (in complex plane; one being real and the other imaginary) makes A_{1} and A_{2} oscillate 90° out of phase - elliptic polarisation!

Longitudinal \& Transverse waves

Definition:

Longitudinal \& Transverse waves have \mathbf{e}_{M} parallel \& perpendicular to \mathbf{k}

- Examples:
- Light waves have $\mathbf{E} \| \mid \mathbf{A}$ perpendicular to \mathbf{k}, i.e. a transverse wave
- Sounds waves (wave equation for the fluid velocity \mathbf{v}) have $\mathbf{v}|\mid \mathbf{k}$, i.e. a longitudinal wave.

Linear algebra: cofactors

- An (i,j):th cofactor, $\lambda_{i j}$ of a matrix $\boldsymbol{\Lambda}$ is the determinant of the "reduced" matrix, obtained by removing row i and column j, times $(-1)^{i+j}$
- In tensor notation (you don't have to understand why!):

$$
\begin{aligned}
& \begin{array}{l}
\lambda_{a i}=\frac{1}{2} \varepsilon_{a b c} \varepsilon_{i j l} \Lambda_{b j} \Lambda_{c l} \text { e.g. } \quad \lambda_{21}=(-1)^{i+j} \operatorname{det}\left|\begin{array}{ccc}
* & \Lambda_{12} & \Lambda_{13} \\
* & * & * \\
\Lambda_{32} & \Lambda_{33}
\end{array}\right|=(-1)^{i+j}\left|\begin{array}{cc}
\Lambda_{12} & \Lambda_{13} \\
\Lambda_{32} & \Lambda_{33}
\end{array}\right| \\
\text { reduced matrix }
\end{array} \\
& \text { - Alternative definition for cofactors: }
\end{aligned}
$$

$$
\Lambda_{i k} \lambda_{k j}=\Lambda \delta_{i j}
$$

- Thus, for $\Lambda=0$ each column $\left(\lambda_{1 j}, \lambda_{2 j}, \lambda_{3 j}\right)^{\top}$ is an eigenvector!
- It can be shown that

$$
\lambda_{a i}=\lambda_{k k} e_{M i} e_{M j}^{*}
$$

where $\lambda_{k k}$ is the trace of λ and $e_{M i}$ are the normalised eigenvectors

Linear algebra: determinants

- The determinant can be written as (Melrose page 139)

$$
\operatorname{det}[\Lambda]=\frac{1}{6} \varepsilon_{a b c} \varepsilon_{i j l} \Lambda_{a i} \Lambda_{b j} \Lambda_{c l}
$$

- Derivatives (note that the three derivates are identical)

$$
\frac{\partial}{\partial x} \operatorname{det}[\Lambda(x)]=\underbrace{\frac{1}{2} \varepsilon_{a b c} \varepsilon_{i j l} \Lambda_{a i} \Lambda_{b j}}_{\text {Cofactors } \lambda_{b j}!} \frac{\partial \Lambda_{c l}}{\partial x}=\lambda_{b j} \frac{\partial \Lambda_{b j}}{\partial x}
$$

- Special case; take derivative w.r.t. the one tensor component

$$
\frac{\partial}{\partial \Lambda_{i j}} \operatorname{det}\left[\Lambda\left(\Lambda_{11}, \Lambda_{12}, \Lambda_{21}, \Lambda_{22} \ldots\right)\right]=\lambda_{n m} \frac{\partial \Lambda_{n m}}{\underbrace{\partial \Lambda_{i j}}_{\delta_{n i} \delta_{j m}}}=\lambda_{i j}
$$

Linear algebra: Taylor expansion

- The determinant of this matrix is a function of the matrix components

$$
\operatorname{det}[\Lambda]=f\left(\Lambda_{11}, \Lambda_{12}, \ldots\right)
$$

- Perturbing the matrix components $\Lambda_{i j} \rightarrow \Lambda_{i j}+\delta \Lambda_{i j}$ we can then Taylor expand

$$
\begin{aligned}
& \operatorname{det}[\Lambda+\delta \Lambda]=f\left(\Lambda_{i j}+\delta \Lambda_{i j}\right)= \\
& =f\left(\Lambda_{i j}\right)+\frac{\partial}{\partial \Lambda_{i j}} f\left(\Lambda_{i j}\right) \delta \Lambda_{i j}+O\left(\delta \Lambda^{2}\right)= \\
& =\operatorname{det}[\Lambda]+\frac{\partial}{\partial \Lambda_{i j}} \operatorname{det}[\Lambda] \delta \Lambda_{i j}+O\left(\delta \Lambda^{2}\right)= \\
& =\operatorname{det}[\Lambda]+\lambda_{i j} \delta \Lambda_{i j}+O\left(\delta \Lambda^{2}\right)
\end{aligned}
$$

Damping of waves

- Next we'll show that for low amplitude waves
- the anti-Hermitian part of the dielectric tensor $K^{A}{ }_{i j}$ describes wave damping, i.e. the decay of the wave
- the Hermitian part provide the dispersion relation
- Consider a plane wave with complex frequency $\omega+i \omega_{I}$

$$
A_{i}(\mathbf{x}, t)=\hat{A}_{i} \exp \left(\omega_{I} t\right) \exp (i \mathbf{k} \bullet \mathbf{x}-i \omega t)
$$

- The wave amplitude decays at a rate $-\omega_{l}$
- Note: the wave energy $\left(\sim|\mathbf{E}|^{2}\right)$ decays at a rate $\gamma=-2 \omega_{\text {, }}$
- The dispersion relation

$$
\operatorname{det}\left[\Lambda_{i j}\left(\omega+i \omega_{I}, \mathbf{k}\right)\right]=\operatorname{det}\left[\Lambda_{i j}^{H}\left(\omega+i \omega_{I}, \mathbf{k}\right)+\Lambda_{i j}^{A}\left(\omega+i \omega_{I}, \mathbf{k}\right)\right]=0
$$

Exercise: show that $\Lambda^{A}=\mathbf{K}^{A}$

- To simplify this further we need to assume weak damping ...

Weak damping of waves

- Assume the damping to be weak by:

$$
K_{i j}^{A} \rightarrow 0 \quad \text { and } \quad \omega_{I} \rightarrow 0
$$

- Also assume $\omega_{I} \sim K^{A}$
- Interpretation of the relation $\omega_{I} \sim K^{A}$: reduce K^{A} by factor, then ω_{I} reduces by the same factor, thus the they go to zero together
- Expand in small ω_{I} :

$$
\begin{aligned}
& \Lambda_{i j}\left(\omega+i \omega_{I}, \mathbf{k}\right) \approx \Lambda_{i j}(\omega, \mathbf{k})+i \omega_{I} \frac{\partial}{\partial \omega} \Lambda_{i j}(\omega, \mathbf{k})+O\left(\omega_{I}{ }^{2}\right) \\
& \quad \approx \Lambda_{i j}^{H}(\omega, \mathbf{k})+\underbrace{K_{i j}^{A}(\omega, \mathbf{k})+i \omega_{I} \frac{\partial}{\partial \omega} \Lambda_{i j}^{H}(\omega, \mathbf{k})}_{1^{\text {st }} \text { order in } \omega_{I}}+i \omega_{I} \frac{\partial}{\partial \omega} K_{i j}^{A}(\omega, \mathbf{k})+O\left(\omega_{I}{ }^{2}\right) \\
& \begin{array}{c}
\rangle^{\text {Both small, i.e. } \sim \omega_{I}^{2}}
\end{array}
\end{aligned}
$$

- Dispersion equation then reads

$$
\operatorname{det}\left[\Lambda_{i j}^{H}+\delta \Lambda_{i j}\right]=0, \delta \Lambda_{i j}=K_{i j}^{A}(\omega, \mathbf{k})+i \omega_{I} \frac{\partial \Lambda_{i j}^{H}(\omega, \mathbf{k})}{\partial \omega}+O\left(\omega_{I}^{2}\right)
$$

- Expand the determinant in small $\delta \Lambda_{i j}$

Weak damping of waves

- The dispersion equation (repeated from previous page):

$$
\operatorname{det}\left[\Lambda_{i j}^{H}+\delta \Lambda_{i j}\right]=0 \quad, \delta \Lambda_{i j}=K_{i j}^{A}(\omega, \mathbf{k})+i \omega_{I} \frac{\partial \Lambda_{i j}^{H}(\omega, \mathbf{k})}{\partial \omega}+O\left(\omega_{I}{ }^{2}\right)
$$

- Taylor expand the determinant

$$
\operatorname{det}\left[\Lambda_{i j}^{H}+\delta \Lambda_{i j}\right]=\operatorname{det}\left[\Lambda_{i j}^{H}\right]+\delta \Lambda_{i j} \lambda_{i j}+O\left(\delta \Lambda_{i j}{ }^{2}\right)
$$

- where $\lambda_{i j}$ are the cofactors of $\Lambda_{i j}{ }^{H}(\omega, \mathbf{k})$
- NOTE: (see "Linear Algebra" pages): $\lambda_{i j} \frac{\partial}{\partial \omega} \Lambda_{i j}^{H}(\omega, \mathbf{k})=\frac{\partial}{\partial \omega} \operatorname{det}\left[\Lambda_{i j}^{H}\right]$
- The dispersion equation can then be written as

$$
\operatorname{det}\left[\Lambda_{i j}^{H}(\omega, \mathbf{k})\right]+\lambda_{i j} K_{i j}^{A}(\omega, \mathbf{k})+i \omega_{I} \frac{\partial}{\partial \omega} \operatorname{det}\left[\Lambda_{i j}^{H}(\omega, \mathbf{k})\right]+O\left(\omega_{I}{ }^{2}\right)=0
$$

Weak damping of waves

- Note that the dispersion equation with weak damping has both real and imaginary parts
- The matrix of cofactors is Hermitian, thus $\lambda_{i j} K_{i j}{ }^{A}$ is imaginary
- Also: $\operatorname{det}\left(\Lambda_{i j}{ }^{H}\right)$ is real

$$
\begin{aligned}
& 0=\operatorname{Re}\{\operatorname{det}[\Lambda(\omega, \mathbf{k})]\} \approx \operatorname{det}\left[\Lambda_{i j}^{H}(\omega, \mathbf{k})\right]+O\left(\omega_{I}^{2}\right) \\
& 0=\operatorname{Im}\{\operatorname{det}[\Lambda(\omega, \mathbf{k})]\} \approx-i \lambda_{i j} K_{i j}^{A}(\omega, \mathbf{k})+\omega_{I} \frac{\partial}{\partial \omega} \operatorname{det}\left[\Lambda_{i j}^{H}(\omega, \mathbf{k})\right]+O\left(\omega_{I}{ }^{2}\right)
\end{aligned}
$$

- The first equation gives dispersion relation for real frequency

$$
\omega=\omega_{M}(\mathbf{k}) \text { such that }: \operatorname{det}\left[\Lambda_{i j}^{H}\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right)\right]+O\left(\omega_{I}{ }^{2}\right)=0
$$

and the second equations gives the damping rate

$$
\omega_{I}=\frac{i \lambda_{i j} K_{i j}^{A}\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right)}{\frac{\partial}{\partial \omega} \operatorname{det}\left[\Lambda_{n m}^{H}(\omega, \mathbf{k})\right]_{\omega=\omega_{M}(\mathbf{k})}}+O\left(\omega_{I}{ }^{2}\right)
$$

Energy dissipation rate, γ_{M}

- Alternatively we can form the energy dissipation rate, i.e. rate at which the wave energy is damped $\gamma_{M}=-2 \omega_{\text {I }}$
- express the cofactor in terms of polarisation vectors $\lambda_{i j}=\lambda_{k k} e_{M i} e_{M j}^{*}$

$$
\gamma_{M}=-2 i \omega_{M}(\mathbf{k}) R_{M}(\mathbf{k})\{\underbrace{e_{M i}^{*}}_{\text {Vector }}(\mathbf{k}) \underbrace{K_{i j}^{A}}_{\text {Matrix }}\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right) \underbrace{e_{M j}}_{\text {Vector }}(\mathbf{k})\}
$$

Note: this is related to the hermitian part of the conductivity, $\sigma_{i j}^{H} \propto i K_{i j}^{A}$

$$
\gamma_{M} \propto e_{M i}^{*}\left[i K_{i j}^{A}\right] e_{M j} \propto e_{M i}^{*} \sigma_{i j}^{H} e_{M j}
$$

- here R_{M} is the ratio of electric to total energy

$$
R_{M}(\mathbf{k})=\left\{\frac{\lambda_{s s}(\omega, \mathbf{k})}{\omega \frac{\partial}{\partial \omega} \operatorname{det}\left[\Lambda_{n m}^{H}(\omega, \mathbf{k})\right]}\right\}_{\omega=\omega_{M}(\mathbf{k})}
$$

and plays an important role in Chapter 15

Determinant and the cofactors in the general case

- Explicit forms for dispersion equation and cofactors
- Write $\boldsymbol{\Lambda}$ in terms of the refractive index n and the unit vector along \mathbf{k}, i.e. $\mathbf{\kappa}=\mathbf{k} /|\mathbf{k}|$

$$
\Lambda_{i j}=\frac{c^{2}}{\omega^{2}}\left(k_{i} k_{j}-|\mathbf{k}|^{2} \delta_{i j}\right)+K_{i j} \rightarrow \Lambda_{i j}=n^{2}\left(\kappa_{i} \kappa_{j}-\delta_{i j}\right)+K_{i j}
$$

- Brute force evaluation give

$$
\operatorname{det}[\Lambda]=n^{4} \kappa_{i} \kappa_{j} K_{i j}-n^{2}\left(\kappa_{i} \kappa_{j} K_{i j} K_{s s}-\kappa_{i} \kappa_{j} K_{i s} K_{s j}\right)+\operatorname{det}[K]
$$

and the cofactors (related to the eigenvector) are

$$
\begin{aligned}
& \lambda_{i j} \approx n^{4} \kappa_{i} \kappa_{j}-n^{2}\left(\kappa_{i} \kappa_{j} K_{s s}-\delta_{i j} K_{r} \kappa_{s} K_{r s}-\kappa_{i} \kappa_{s} K_{s j}-\kappa_{s} \kappa_{j} K_{i s}\right)+ \\
& +1 / 2 \delta_{i j}\left(K_{s s}{ }^{2}-K_{r s} K_{s r}\right)+K_{i s} K_{s j}+K_{s s} K_{i j}
\end{aligned}
$$

Ex. 1: Isotropic, not spatially dispersive, media

- Isotropic, not spatially dispersive, media $\quad K_{i j}(\omega)=K(\omega) \delta_{i j}$
- Place z-axis along \mathbf{k} ($n=$ refractive index)

$$
\Lambda_{i j}=\left(\begin{array}{ccc}
K-n^{2} & 0 & 0 \\
0 & K-n^{2} & 0 \\
0 & 0 & K
\end{array}\right)
$$

- Dispersion equation : $\left(K-n^{2}\right)^{2} K=0$
K is the square root of the refractive index
- Dispersion relations:

$$
\left\{\begin{array}{l}
n^{2}=K(\omega) \rightarrow n_{M}(\omega)^{2} \equiv K(\omega) \\
K(\omega)=0
\end{array}\right.
$$

- Note: $K(\omega)=0$ means oscillations, NOT waves! (See section on Group velocity)
- The waves $n^{2}=K(\omega)$ are transverse waves
- Plug dispersion relation into $\Lambda_{i j}$ to see that the eigenvectors are perpendicular to \mathbf{k} !
- Polarisation vectors of transverse waves are degenerate (not unique eigenvector per mode); discussed in detail in Chapter 14.

Ex 2: Isotropic media with spatial dispersion

- Isotropic media with spatial dispersion (e.g. align z-axis: $\mathbf{e}_{z}=\boldsymbol{\kappa}$)

$$
K_{i j}(\omega, \mathbf{k})=K^{L}(\omega, k) \kappa_{i} \kappa_{j}+K^{T}(\omega, k)\left(\delta_{i j}-\kappa_{i} \kappa_{j}\right)=\left[\begin{array}{ccc}
K^{T} & 0 & 0 \\
0 & K^{T} & 0 \\
0 & 0 & K^{L}
\end{array}\right]
$$

- Dispersion equation

$$
K^{L}(\omega, k)\left[K^{T}(\omega, k)-n^{2}\right]^{2}=0
$$

- The longitudinal dispersion relation $K^{L}(\omega, k)=0$
- Dispersion give us a longitudinal wave! (eigenvector parallel to \mathbf{k})
- Transverse dispersion relation $K^{T}(\omega, k)-n^{2}=0$
- Again the transverse waves are degenerate.

Ex 3: Birefringent media

- Uniaxial and biaxial crystals are birefringent
- A light ray entering the crystal splits into two rays; the two rays follow different paths through the crystal.
- Why?
- E.g. study an uniaxial crystal;
- align z-axis with the distinctive axis of the crystal

$$
K(\omega)=\left(\begin{array}{ccc}
K_{\perp}(\omega) & 0 & 0 \\
0 & K_{\perp}(\omega) & 0 \\
0 & 0 & K_{\|}(\omega)
\end{array}\right)
$$

- Align coordinates \mathbf{k} in x-z plane; let θ be the angle between z -axis and \mathbf{k}.

$$
\kappa=(\sin \theta, 0, \cos \theta)
$$

Birefringent media (cont.)

- Dispersion equation in uniaxial media

$$
\left(K_{\perp}-n^{2}\right)\left[K_{\perp} K_{\|}-n^{2}\left(K_{\perp} \sin ^{2} \theta+K_{\|} \cos ^{2} \theta\right)\right]^{2}=0
$$

- Two modes, different refractive index (naming conventions differ!)
- The (ordinary) O-mode: $\quad n_{o}{ }^{2}=K_{\perp}$
- The (extraordinary) X-mode: $n_{X}{ }^{2}=\frac{K_{\perp} K_{\|}}{K_{\perp} \sin ^{2} \theta+K_{\| \mid} \cos ^{2} \theta}$
- O-mode: is transverse: $\mathbf{e}_{o}(\mathbf{k})=(0,1,0)$
- E-field along the crystal plane
- X-mode: is not transverse and not longitudinal:

$$
\mathbf{e}_{X}(\mathbf{k}) \propto\left(K_{\|} \cos \theta, 0, K_{\perp} \sin \theta\right)
$$

- E-field has components both along and perpendicular to crystal plane

Wave splitting

- Let a light ray fall on a birefringent crystal with electric field components in all directions ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
- The y-component will enter the crystal as an O-mode! (polarisation vector is in y-direction)
- The x,z-components as X-modes (polarisation vector is in xz-plane)
- The O-mode and X-mode have different refractive index (they travel with different speed), i.e. the wave will refract differently!

Quartz crystals are birefringent. Here the different refraction for the O - and X - modes makes you see the lettters twice.

Outline

- Derivation of the wave equation and definition of wave quantities:
- dispersion equation / dispersion relation / refractive index
- wave polarization
- Some math for wave equations (mainly linear algebra)
- relation between damping and antihermitian part of the dielectric tensor
- Waves in ideal anisotropic media
- birefringent crystals
- Group velocity
- Plasma oscillations
- Elementary plasma waves
- Langmuir waves
- ion-acoustic waves
- high frequency transverse wave
- Alfven waves
- Wave resonances \& cut-offs

The group velocity

- The propagation of waves is a transfer of energy
- e.g. the light from the sun transfer energy to earth (you feel warm when being in the sun!)
- Consider a wave package from an antenna
- Is this package travel with the phase velocity?

Answer: In dispersive media the answer is no!!

The velocity at which the shape of the wave's amplitudes (modulation/envelope) moves is called the group velocity

- The group velocity is often the velocity of information or energy
- Warning! There are exceptions; experiments have shown that group velocity can go above speed of light, but then the information does not travel as fast

The velocity of a wave package, 1(2)

- The concept of group velocity can be illustrated by the motion of a wave package
- This motion can easily be identified for a 1D wave package
- travelling in a wave mode with dispersion relation: $\omega-\omega_{M}(k)$
- assuming the wave is almost monocromatic

$$
\omega_{M}(k) \approx \omega_{M 0}+\omega_{M 0}^{\prime}\left(k-k_{0}\right) \quad, \quad \omega_{M 0}^{\prime} \equiv \frac{d \omega_{M 0}}{d k}
$$

- Let the wave have a Fourier transform
complex conjugate of the first term: below denoted c.c.

$$
E(\omega, k)=A(k) \delta\left(\omega-\omega_{M}(k)\right)+A^{*}(k) \delta\left(\omega+\omega_{M}(k)\right)
$$

- To study how the wave package travel in space-time, take the inverse Fourier transform

$$
\begin{aligned}
& E(t, r)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} d \omega \int_{-\infty}^{\infty} d k A(k) \delta\left(\omega-\omega_{M}(k)\right) \exp \{i k x-i \omega t\}+c . c . \\
& =\frac{1}{4 \pi} \int_{-\infty}^{\infty} d k A(k) \exp \left\{i k x-i \omega_{M}(k) t\right\}+c . c .
\end{aligned}
$$

The velocity of a wave package, 2(2)

- Now apply the assumption of having "almost chromatic waves"

$$
\begin{aligned}
& \omega_{M}(k) \approx \omega_{M 0}+\omega_{M 0}^{\prime}\left(k-k_{0}\right) \Rightarrow \\
& E(t, x) \approx \frac{1}{4 \pi} \int_{-\infty}^{\infty} d k A(k) \exp \left\{i k x-i \omega_{M}(k) t\right\}+\text { c.c. }= \\
& =\frac{\exp \left\{-i \omega_{M 0} t\right\}}{4 \pi} \int_{-\infty}^{\infty} d k A(k) \exp \left\{k\left(x-\omega^{\prime}{ }_{M 0} t\right)\right\}+\text { c.c. }=\exp \left\{-i \omega_{M 0} t\right\} f c n\left(x-\omega^{\prime}{ }_{M 0} t\right)+\text { c.c. } .
\end{aligned}
$$

- i.e. if a wave package is centered around $x=0$ at time $t=0$, then at time $t=T$ wave package has the identical shape but now centred around $x=\omega_{M 0} T$

- Wave package moves with a speed called the group velocity :

$$
v_{g}=\omega_{M 0}^{\prime} \equiv \frac{d \omega_{M 0}}{d k}
$$

Hamilton's equations of motion

- The concept of group velocity can also be studied in terms of rays
- How do you follow the path of a ray in a dispersive media?
- Hamilton studied this problem in the mid 1800's and developed a particle theory for waves; i.e. like photons! (long before Einstein)
- Hamilton's theory is now known as Hamiltonian mechanics
- Hamilton's equations of motion are for a particle:
- where

$$
\begin{aligned}
& \dot{q}_{i}(t)=\frac{\partial H(p, q, t)}{\partial p_{i}} \\
& \dot{p}_{i}(t)=-\frac{\partial H(p, q, t)}{\partial q_{i}}
\end{aligned}
$$

- $q_{i}=(x, y, z)$ are the position coordinates
- $p_{i}=\left(m v_{x} m v_{y}, m v_{z}\right)$ are the canonical momentum coordinates
- The Hamiltonian H is the sum of the kinetic and potential energy
- But what are q_{i}, p_{i} and H for waves?

Hamilton's equations for rays

- What are q_{i}, p_{i} and H for waves?
- The position coordinates $q_{i}=(x, y, z)$
- In quantum mechanics the wave momentum is $\hbar k$; in Hamilton's theory the momentum is $p_{i}=\left(k_{x}, k_{y}, k_{z}\right)$
- The Hamiltonian energy H is $\omega_{M}(k)$ (energy of wave in quanta $\hbar \omega$), i.e. the solution to the dispersion relation for the mode M !
- Consequently, the group velocity of a wave mode M is:

$$
\mathbf{v}_{g M} \equiv \dot{\mathbf{q}}=\frac{\partial \omega_{M}(\mathbf{k})}{\partial \mathbf{k}}
$$

- The second of Hamilton equations tells us how \mathbf{k} changes when passing through a weakly inhomogeneous media, i.e. one in which the dispersion relation changes slowly as the wave propagates through the media, $\omega_{M}(\mathbf{k}, \mathbf{q})$

$$
\dot{\mathbf{k}}=-\frac{\partial \omega_{M}(\mathbf{k}, \mathbf{q})}{\partial \mathbf{q}}
$$

Warning! Hamiltons equations only work for almost homogeneous media. If the media changes rapidly the ray description may not work!

Examples of group velocities

- Let us start with the ordinary light wave $\omega_{L}(\mathbf{k})=c k=c \sqrt{k_{i} k_{i}}$
- The group velocity: $\quad v_{g M, i} \equiv \frac{\partial}{\partial k_{i}} \omega_{L}(\mathbf{k})=\frac{\partial}{\partial k_{i}} c k=c \kappa_{i}$
- The phase velocity: $\quad v_{p h M, i} \equiv \frac{\omega_{L}(\mathbf{k})}{k} \kappa_{i}=c \kappa_{i}$
- High frequency waves: $\omega_{M}(\mathbf{k})^{2}=c^{2} k^{2}+\omega_{p e}{ }^{2}$ (response of electron gas; discussed shortly)
- The group velocity:

$$
v_{g M, i}=\frac{\partial}{\partial k_{i}} \sqrt{\omega_{p e}^{2}+c^{2} k^{2}}=\frac{c}{\sqrt{\omega_{p e}{ }^{2} /(k c)^{2}+1}} \kappa_{i}
$$

- The phase velocity: $\quad v_{p h T, i}=\left(\omega_{p e}{ }^{2} /(k c)^{2}+1\right)^{1 / 2} c \kappa_{i}$
- Note:
- phase velocity may be faster than speed of light
- group velocity is slower than speed of light
- Note: information travel with v_{g}; cannot travel faster than speed of light

Plasma oscillations

- Plasma oscillations: "the linear reaction of cold and unmagnetised electrons to electrostatic perturbations"
- Cold electrons are electrons where the temperature is negligible.
- Model equations:
- Electrostatic perturbations follow Poisson's equation

$$
\Delta \phi=\rho / \varepsilon_{0}
$$

where $\rho=q_{i} n_{i}+q_{e} n_{e}$ is the charge density.

- Electron response

$$
m_{e} \frac{\partial v_{e}}{\partial t}=q_{e} \nabla \phi
$$

- Ion response; ions are heavy and do not have time to move: $\mathbf{v}_{i}=0$
- Charge continuity

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{J}=0 \quad, \text { where } \quad \mathbf{J}=q_{i} n_{i} \mathbf{v}_{i}+q_{e} n_{e} \mathbf{v}_{e}
$$

Plasma oscillations

- Consider small oscillations near a static equilibrium:

$$
\left.\begin{array}{rl}
\mathbf{v}_{e}(t) & =0+\mathbf{v}_{e 1}(t) \\
\phi(t) & =0+\phi_{1}(t) \\
n_{e}(t) & =n_{0}+n_{e 1}(t) \\
n_{i}(t) & =n_{0} q_{e} / q_{i}+0
\end{array}\right] \quad \begin{aligned}
& \begin{array}{c}
\text { Non-linear } \\
\text { (small term) }
\end{array} \\
& \rho=q_{e} n_{e 1}\left(n_{e \mathbf{0}} \mathbf{v}_{e 1}+n_{e 1} \mathbf{v}_{e 1}\right) \approx q_{e} n_{e 0} \mathbf{v}_{e 1} \\
&
\end{aligned}
$$

- where all the small quantities have sub-index 1 .
- Next Fourier transform in time and space

$$
\left.\begin{array}{l}
-k^{2} \phi_{1}=q_{e} n_{e 1} / \varepsilon_{0} \\
-i \omega m_{e} \mathbf{v}_{e 1}=i q_{e} \mathbf{k} \phi_{1} \\
-i \omega\left(q_{e} n_{e 1}\right)+i \mathbf{k} \cdot\left(q_{e} n_{e 0} \mathbf{v}_{e 1}\right)=0
\end{array}\right] \quad\left[\begin{array}{c}
{[\omega^{2}-\underbrace{n_{e 0} q_{e}^{2} /\left(\varepsilon_{0} m_{e}\right)}_{\equiv \omega_{p e}{ }^{2}}] n_{e 1}=0} \\
\begin{array}{l}
\omega_{p e} \text { is the plasma frequency } \\
\text { (see previous lecture) }
\end{array}
\end{array}\right.
$$

Plasma oscillations

- Equation for the density oscillation is a dispersion equation

$$
\left[\omega^{2}-\omega_{p e}^{2}\right] n_{e 1}=0
$$

- Eigen-oscillations appear when

$$
\omega^{2}=\omega_{p e}^{2}
$$

- These are plasma oscillations!
- Note: $v_{g M, i} \equiv \pm \frac{\partial}{\partial k_{i}} \omega_{p e}=0$

Thus, plasma oscillation is not a wave since no information is propagated by the oscillation!

- However, if we let the electrons have a finite temperature the plasma oscillations are turned into Langmuir waves!

Plasma oscillations in the dielectric tensor

- Let us first derive plasma oscillations for from the dielectric tensor.
- The cold magnetised plasma tensor:

$$
K=\left(\begin{array}{ccc}
S & -i D & 0 \\
i D & S & 0 \\
0 & 0 & P
\end{array}\right)
$$

- Assume: \mathbf{k} parallel to \mathbf{B}_{0} (the z-direction)

$$
\operatorname{det}\left(\begin{array}{ccc}
S-n^{2} & -i D & 0 \\
i D & S-n^{2} & 0 \\
0 & 0 & P
\end{array}\right)=0
$$

- Solution $P=1-\omega^{2} / \omega_{p}^{2}=0$, or $\omega=\omega_{p e}$, i.e. plasma oscillation!
- Plasma oscillation can be found
- in non-magnetised plasmas (previous page),
- E-field along the direction of the magnetic field (see above) and
- in almost any media when $\omega_{p e}$ is a very high frequency (at high frequency electrons respond like free particle)

Langmuir waves

- Langmuir waves are longitudinal waves in a non-magnetised warm plasma. With k in the z-direction

$$
K=\left(\begin{array}{ccc}
K_{T} & 0 & 0 \\
0 & K_{T} & 0 \\
0 & 0 & K_{L}
\end{array}\right) \quad \operatorname{det}^{2}\left(\begin{array}{ccc}
K_{T}-n^{2} & 0 & 0 \\
0 & K_{T}-n^{2} & 0 \\
0 & 0 & K_{L}
\end{array}\right)=0
$$

- Where K_{L} and K_{T} are given on page 120.
- The longitudinal solution is $\mathfrak{R}\left\{K_{L}\right\} \approx 0$ where

$$
K_{L}=1+\sum_{i} \frac{1}{k^{2} \lambda_{D i}^{2}}\left[1-\phi\left(y_{i}\right)+i \sqrt{\pi} y_{i} e^{-y_{i}^{2}}\right]
$$

$$
\left\{\begin{aligned}
v_{t h i} \equiv \sqrt{T_{i} / m_{i}} \\
\lambda_{D i} \equiv v_{t h i} / w_{p i} \\
y_{i} \equiv \omega / 2^{1 / 2} k v_{t h i}
\end{aligned}\right.
$$

- Neglect ions response and expand in small thermal electron velocity (almost cold electrons); use expansion in Eq. (10.30), gives approximate dispersion relation for Langmuir waves

$$
\omega^{2}=\omega_{L}^{2}(k) \approx \omega_{p e}^{2}+3 k^{2} v_{\text {the }}^{2} \longleftarrow \begin{aligned}
& \text { Letting } v_{\text {the }}=0 \text { give } \\
& \text { plasma oscillations! }
\end{aligned}
$$

Polarization of Langmuir waves

- Polarization vector e_{i} can be obtained from wave equation when inserting the dispersion relation $K_{L} \approx K_{L}^{H}=0$

$$
\left(\begin{array}{ccc}
K_{T}-n^{2} & 0 & 0 \\
0 & K_{T}-n^{2} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=0 \quad\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \Longrightarrow e_{i}=\delta_{i 3}
$$

- Thus, the wave damping can be written as

$$
\begin{aligned}
& \qquad \gamma_{L}=-2 i \omega_{L}(\mathbf{k}) R_{L}(\mathbf{k})\left\{e_{L i}^{*}(\mathbf{k}) K_{i j}^{A}\left(\omega_{L}(\mathbf{k}), \mathbf{k}\right) e_{L j}(\mathbf{k})\right\}= \\
& =-2 i \omega_{L}(\mathbf{k}) R_{L}(\mathbf{k}) K_{33}^{A}\left(\omega_{L}(\mathbf{k}), \mathbf{k}\right)= \\
& =-2 i \omega_{L}(\mathbf{k}) R_{L}(\mathbf{k}) \mathfrak{\Im}\left\{K_{L}\left(\omega_{L}(\mathbf{k}), \mathbf{k}\right)\right\} \\
& \text { where } \frac{1}{R_{L}(k)}=\left.\omega \frac{\partial \operatorname{Re}\left[K_{L}(\omega, k)\right]}{\partial \omega}\right|_{\omega=\omega_{L}(k)}
\end{aligned}
$$

Absorption of Langmuir waves

- Inserting the dispersion relation and the expression for K_{L} gives the energy dissipation rate

$$
\gamma_{L} \approx\left(\frac{\pi}{2}\right)^{1 / 2} \frac{\omega_{p e}{ }^{4}}{v_{\text {the }}{ }^{3} k^{3}} N_{\text {res }} \text {, where } N_{r e s}=\exp \left[-v^{2} / 2 v_{\text {the }}{ }^{2}\right]_{v=\omega_{L}(k) / k}
$$

- Damping (dissipation) is due to Landau damping, i.e. for electrons with velocities v such that $\omega_{L}(k)-k v=0$
- Here $N_{\text {res }}$ is proportional to the number of Landau resonant electrons
- Damping is small for small \& large thermal velocities

$$
\begin{aligned}
& k v_{\text {the }} / \omega_{L}(k) \rightarrow 0 \Longrightarrow \gamma_{L} \sim{\underset{t v_{t h e} \rightarrow 0}{\lim } v_{\text {the }}}^{-3} \exp \left[-v^{2} / 2 v_{\text {the }}{ }^{2}\right] \rightarrow 0 \\
& k v_{\text {the }} / \omega_{L}(k) \rightarrow \infty \Longrightarrow \gamma_{L} \sim_{v_{\text {the }} \rightarrow \infty} \lim _{\text {the }} \exp [-0] \rightarrow 0
\end{aligned}
$$

- Maximum in damping is when $v_{\text {the }} \approx \omega_{L}(k) / k$

Ion acoustic waves

- In addition to the Langmuir waves there is another longitudinal plasma wave (i.e. $K_{L}=0$) called the ion acoustic wave.
- This mode require motion of both ions and electrons. Assume:
- Very hot electrons: $v_{\text {the }} \gg \omega / k$, expansions (10.29)
- Almost cold ions: $v_{t h i} \ll \omega / k$, expansions (10.30)

$$
\mathfrak{R}\left\{K_{L}\right\}=1+\underset{\text { electron }}{\frac{1}{k^{2} \lambda_{D e}^{2}}}-\underbrace{\omega_{p i}{ }^{2}}_{\text {ion }} \omega^{\omega^{2}} \Longrightarrow\left\{\begin{array}{l}
\omega=\omega_{\text {IA }}(k) \approx \frac{k v_{s}}{\sqrt{1+k^{2} \lambda_{D e}^{2}}} \\
\gamma_{L} \approx\left(\frac{\pi}{2}\right)^{1 / 2} \omega_{\text {IA }}(k)\left(\frac{v_{s}}{v_{\text {the }}}+\left(\frac{\omega_{s}(k)}{k v_{\text {the }}}\right)^{3} N_{\text {res }}\right)
\end{array}\right.
$$

- Here v_{s} is the sounds speed: $v_{s}=\omega_{p i} \lambda_{D e}^{2}=\sqrt{T / m_{e}}$
- Again, $N_{\text {res }}$ is proportional to the number of Landau resonant electrons
- Ion acoustic waves reduces to normal sounds waves for small $k \lambda_{D e}$

$$
\omega=\omega_{\text {Sound }}(k) \approx k v_{s}
$$

Transverse waves - Modified light waves

- High frequency wave transverse, $\omega \gg \omega_{p e}$, behave almost like light waves.
- Expanding in small $\omega_{p e} / \omega$ gives: $K_{T}=1-\omega^{2} / \omega_{p e}{ }^{2}$
- Transverse dispersion relation:

$$
K_{T}-n^{2}=0 \quad \Longrightarrow \omega^{2}=\omega_{T}(k)^{2} \approx \omega_{p e}^{2}+c^{2} k^{2}
$$

- These waves are very weakly damped;
- Phase velocity

$$
v_{p h}^{2}=c^{2}+\omega_{p e}^{2} / k^{2}>c^{2}
$$

thus no resonant particles and thus no Landau damping!

- damping can be obtained from collisions; for "collision frequency" $=v_{e}$ the energy decay rate is

$$
\gamma_{T}(k) \approx v_{e} \frac{\omega_{p e}{ }^{2}}{\omega^{2}}
$$

Alfven waves (1)

- Next: Low frequency waves in a cold magnetised plasma including both ions and electrons
- These waves were first studied by Hannes Alfvén, here at KTH in 1940. The wave he discovered is now called the Alfvén wave.
- To study these waves we choose:

$$
\mathbf{B} \| \mathbf{e}_{z} \text { and } \mathbf{k}=\left(k_{x}, 0, k_{\|}\right)
$$

- The dielectric tensor for these waves were derived in the previous lecture assuming $\omega \ll \omega_{c i}, \omega_{p i}$ (see also home assignment for Friday!)

$$
K=\left(\begin{array}{lll}
S & 0 & 0 \\
0 & S & 0 \\
0 & 0 & P
\end{array}\right)\left\{\begin{array}{l}
S \approx c^{2} \frac{\mu_{0} \sum_{j} m_{j} n_{j}}{B^{2}}=\frac{c^{2}}{V_{A}{ }^{2}} \quad V_{A}=\text { "Alfvén speed" } \\
P \approx \frac{1}{\omega^{2}} \sum_{j} \frac{n_{j} q_{j}{ }^{2}}{m_{j} \varepsilon_{0}}=\frac{\omega_{p}{ }^{2}}{\omega^{2}}
\end{array}\right.
$$

Alfven waves (2)

- Wave equation
- for $n_{j}=c k_{j} / \omega$

$$
\left(\begin{array}{ccc}
S-n_{\|}^{2} & 0 & -n_{\|} n_{x} \\
0 & S-n^{2} & 0 \\
-n_{\|} n_{x} & 0 & P-n_{x}^{2}
\end{array}\right)\left(\begin{array}{c}
E_{x} \\
E_{y} \\
E_{\|}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- First, if you put in numbers, then P is huge!
- Thus, third equations gives $E_{\| \|} \approx 0$ ($E_{\|}$is the E-field along \mathbf{B})
- Why is $E_{\| \mid} \approx 0$ for low frequency waves have?
- electrons can react very quickly to any $E_{\|}$perturbation (along B) and slowly to E-perturbations perpendicular to \mathbf{B}
- Thus, they allow E-fields to be perpendicular, but not parallel to \mathbf{B} !
- We are then left with a 2 D system:

$$
\left(\begin{array}{ccc}
S-n_{\|}^{2} & 0 & -- \\
0 & S-n^{2} & -- \\
-- & -- & --
\end{array}\right)\left(\begin{array}{c}
E_{x} \\
E_{y} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Alfven waves (3)

- There are two eigenmodes:

$$
\left(\begin{array}{ccc}
S-n_{\|}{ }^{2} & 0 & -- \\
0 & S-n^{2} & -- \\
-- & -- & --
\end{array}\right)\left(\begin{array}{c}
E_{x} \\
E_{y} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \operatorname{det}\left[\Lambda_{i j}\right]=\left(S-n^{2}\right)\left(S-n_{\|}{ }^{2}\right)=0
$$

- The shear Alfvén wave (shear wave): $S=n_{\|}{ }^{2}$, or $\omega_{A}=k_{\|} V_{A}$
- Important in almost all areas of plasma physics e.g. fusion plasma stability, space/astrophysical plasmas, molten metals and other laboratory plasmas
- Polarisation: see exercise!
- The compressional Alfvén wave: $S=n^{2}$, or $\omega_{F}=k V_{A}$ (fast magnetosonic wave)
- E.g. used in radio frequency heating of fusion plasmas (my research field)
- Polarisation: see exercise!

Ideal MHD model for Alfven waves

The most simple model that gives the Alfven waves is the linearized ideal MHD model for a

- quasi-neutral, low pressure plasma - described by fluid velocity \mathbf{v}
- in a static magnetic field \mathbf{B}_{0}
- at low frequency and long wave length

$$
\begin{aligned}
n m \frac{d \mathbf{v}}{d t}=\mathbf{j} \times \mathbf{B}_{0} & \begin{array}{l}
\text { Momentum balance } \\
\text { (sum of electron and ion momentum balance; } \left.n_{e} q_{e} \mathbf{v}_{e}+n_{i} q_{i} \mathbf{v}_{i}=\mathbf{J}\right)
\end{array} \\
\mathbf{E}+\mathbf{v} \times \mathbf{B}_{0}=\mathbf{0} & \begin{array}{l}
\text { Ohms law } \\
\text { (electron momentum balance when } \left.m_{e} \rightarrow 0\right)
\end{array} \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \text { Faraday's law } \\
\nabla \times \mathbf{B}=\mu_{0} \mathbf{j} & \text { Ampere's law }
\end{aligned}
$$

Wave equation for shear Alfven waves

Derivation of wave equation for the shear wave

1. Substitude E from Ohms law into Faraday's law

$$
\nabla \times\left(\mathbf{v} \times \mathbf{B}_{0}\right)=-\frac{\partial \mathbf{B}}{\partial t}
$$

2. Take the time derivative of the equation above and use the momentum balance to eliminate the velocity

$$
\nabla \times\left(\left(\frac{\mathbf{j} \times \mathbf{B}_{0}}{m n}\right) \times \mathbf{B}_{0}\right)=-\frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

3. Assume the induced current to be perpendicular to \mathbf{B}_{0}

$$
\frac{\left|B_{0}\right|^{2}}{m n} \nabla \times \mathbf{j}=-\frac{\partial^{2} \mathbf{B}}{\partial t^{2}} \quad \text { Note }: \quad \frac{\left|B_{0}\right|^{2}}{m n}=\mu_{0} V_{A}{ }^{2}
$$

4. Finally use Ampere's law to eliminate \mathbf{j}

$$
\nabla \times(\nabla \times \mathbf{B})+V_{A}^{-2} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}=0 \quad \text { Wave equation with phase \& group velocity } V_{A}
$$

Physics of the shear Alfven waves

- In MHD the plasma is "frozen into the magnetic field" (see course in Plasma Physics)
- When plasma move, it "pulls" the field line along with it (eq. 1 prev. page)
- The plasma give the field lines inertia, thus field lines bend back - like guitar strings!
- Energy transfer during wave motion:
- B-field is bent by plasma motion; work needed to bend field line
- kinetic energy transferred into field line bending
- Field lines want to unbend and push the plasma back:
- energy transfer from field line bending to kinetic energy
- ... wave motion!
- B-field lines can act like strings:
- The Alfven wave propagates along field lines like waves on a string!
- Reason: the group velocity always points in the direction of the magnetic field!

Group velocities of the shear wave

- Dispersion relation for the shear Alfven wave: $\omega_{A}(\mathbf{k})=V_{A} k_{\|}=V_{A} \mathbf{k} \cdot \mathbf{B} /|\mathbf{B}|$
- phase velocity: $\mathbf{v}_{p h A} \equiv \pm \frac{V_{A} k_{\| \|}}{k} \frac{\mathbf{k}}{k}$
- group velocity: $\mathbf{v}_{g A} \equiv \frac{\partial}{\partial \mathbf{k}}\left(\pm V_{A} k_{\|}\right)= \pm V_{A} \frac{\mathbf{B}}{|\mathbf{B}|}$
- wave front moves with $\mathbf{v}_{p h A}$, along $\mathbf{k}=\left(k_{x}, 0, k_{\|}\right)$
- wave-energy moves with $\mathbf{v}_{g A}$, along $\mathbf{B}=\left(0,0, B_{0}\right)$!

- Thus, a shear Alfven waves is "trapped to follow magnetic field lines"
- like waves propagating along a string
- Note also:

$$
\left|\mathbf{v}_{g A}\right|=V_{A} \geq\left|\mathbf{v}_{p h A}\right|
$$

- Fast magnetosonic wave $\omega_{F}(\mathbf{k})=V_{A} k$ is not dispersive!

$$
\mathbf{v}_{g F, i}=\mathbf{v}_{p h F, i}=V_{A} \frac{\mathbf{k}}{k}
$$

- Thus, an external source may excite two Alfven wave modes propagating in different directions, with different speed!

Resonances, cut offs \& evanescent waves

- Dispersion relation often has singularities of the form

$$
k^{2} \sim 1+\frac{\omega_{1}}{\omega-\omega_{r e s}}=\frac{\omega-\omega_{c u t}}{\omega-\omega_{r e s}}, \quad \omega_{c u t}=\omega_{1}-\omega_{r e s}
$$

- 3 regions with different types of waves
$-\omega<\omega_{\text {cut }} \& \omega>\omega_{\text {res }}$, then $k^{2}>0$

$$
\begin{aligned}
E & \sim E_{1} \exp (i|k| x)+E_{2} \exp (-i|k| x) \\
-\omega_{c u t} & <\omega<\omega_{r e s}, \text { then } k^{2}<0 \\
E & \sim E_{1} \exp (|k| x)+E_{2} \exp (-|k| x)
\end{aligned}
$$

called evanescent waves (growing/decaying)

- The transitions to evanescent waves occur at either

Evanescent region

- resonances; $k \rightarrow \infty$, i.e. the wave length $\lambda \rightarrow 0$
- here at $\omega>\omega_{0}$
- cut-offs ; $k \rightarrow 0$, i.e. the wave length $\lambda \rightarrow \infty$
- here at $\omega<\omega_{0}-\omega_{1}$

CMA diagram for cold plasma with ions and electrons

- This plasma model can have either 0,1 or 2 wave modes
- The modes are illustrated in the CMA diagram
- 3 symbols representing different types of inosotropy:
- ellipse:
- "eight":

- "infinity": ∞
(don't need to know the details)
- When moving in the diagram mode disappear/appear at:
- resonances ; $k \rightarrow \infty$
- cut-offs ; $\mathrm{k} \rightarrow 0$

