

Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

Lecture 9 February 13, 2013

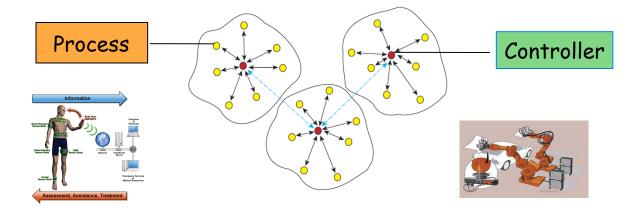
Carlo Fischione Associate Professor of Sensor Networks

e-mail: carlofi@kth.se
http://www.ee.kth.se/~carlofi/

KTH Royal Institute of Technology Stockholm, Sweden

Previous lecture

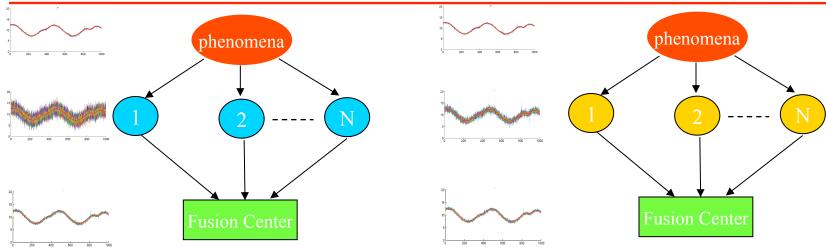
Application


Presentation

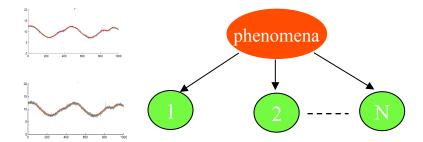
Session Transport

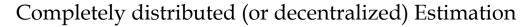
Routing

MAC


Phy

How to estimate phenomena from noisy measurements?




Estimation

Centralized Estimation: no intelligence on sensors

Distributed Estimation: some intelligence on sensors

Course content

Part 1

- ➤ Lec 1: Introduction
- Lec 2: Programming

• Part 2

- > Lec 3: The wireless channel
- > Lec 4: Physical layer
- > Lec 5: Mac layer
- ➤ Lec 6: Routing

Part 3

- > Lec 7: Distributed detection
- > Lec 8: Distributed estimation
- ➤ Lec 9: Positioning and localization
- > Lec 10: Time synchronization

Part 4

- > Lec 11: Networked control systems 1
- > Lec 12: Networked control systems 2
- > Lec 13: Summary and project presentations

Today's learning goals

- Which measurements are used for estimating the position of a node?
- How to estimate the position of a node?
- What is the effect of measurement noises?

- Common measurements
 - time
 - range
 - angle
- Triangulation
- Trilateration
- Distributed collaborative methods

- We have studied the basic of localization for sensor networks
- Localizing the nodes consists in applying estimation techniques
- Statistical methods could give more precision, but are also more complex

Application of estimation and detection to synchronization