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3 The Structure of the Free Energy

In this chapter we adapt the work [6] (in which a novel interpolating cavity field technique
was developed for the SK model) to the mean field Ising model.

The main idea of the cavity field method is to look for an explicit expression of ay () =
— B fx(B) upon increasing the size of the system from N particles (the cavity) to N + 1 so
that, in the limit of N that goes to infinity [25, 27]

lim (—BFy11(B) — (—BFx(B) =—Bf (B) (23)

because the existence of the thermodynamic limit (Sect. 2.2) implies only vanishing correc-
tion of the free energy density.

Note Strictly speaking the limit does exist surely just in the Cesaro sense [23] (Cesaro limits
are employed when analyzing sequences which can oscillate and do not converge, i.e. the
Liebnitz series converges to zero in the Cesaro sense [36]) but this level of mathematical
rigor will not be presented along the paper.
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3.1 Interpolating Cavity Field

As we will see, the interpolating technique can be very naturally implemented in the cavity
method; let us consider the partition function of a system made by N + 1 spins:

Zny1(B) = Zg_ﬁH.*—'—lliﬂ]

i
E E '{-'IHIZ i o ju N OO L Z L PO ON L] .
= el - | =i=j=N%I _.'Er-,":':[— I=<i=N"I“N4+ X {24)

oyei==x1 o

With the gauge transformation o; — o;0x5.1, Which, of course, is a symmetry of the Hamil-
tonian, we get

Zns1(B) = 2Zy (B*)i(e ™ Lisi=y o) (25)

where @ is the Boltzmann state at the inverse temperature g* = ﬁ%] (note that in the
thermodynamic limit the shifted temperature converges to the real one 8* — f#). Let us
reverse the temperature shift and apply the logarithm to both the sides of (25) to obtain

N +1
InZy . (ﬁT) —In2+1nZy(B) + Inwy (¥ Tizi=n iy, (26)
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Equation (26) tell us that via the third term of its r.h.s. we can bridge an Ising system with
N particles at an inverse temperature 8 to an Ising system with N + 1 particles at a shifted
inverse temperature f* = (N + 1)/N. Focusing on such a term let us make the following
definitions.

Definition 1 We define an extended partition function Zy(f, 1) as

Zy(B.1) :Zg—ﬁ”-ﬂ”i”]gi;' Yl<ieNOi (27)

a

Note that the above partition function, at + = 8, turns out to be, via the global gauge
symmetry o; — o;0x5.1, a partition function for a system of N + 1 spins at a shifted tem-
perature £* apart a constant term. On the same line

Definition 2 We define the generalized Boltzmann state (), as

¥ Li<i<N i
(F(o)), = (Fo)er = }, (28)

(E# Elgfg.-‘»."”r'}

F (o) being a generic function of the spins.
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Definition 3 Related to the Boltzmann state () we define the cavity function ¥ (f,1) =
E.lﬂll.\.r_,x "b.""-"{ﬁ? .irjl ds

(B, 1) = lim Wy(B,1) = lim In(e¥ Trsin ). (29)

N—oo

It will appear clear, while reading the paper, when we deal with the finite- N cavity func-
tion and when with its thermodynamic limit.

Definition 4 We define respectively as fillable and filled monomials the odd and even mo-
menta of the magnetization weighted by the extended Boltzmann measure such that

— (my*"), with n € N is fillable
— (my"), with n € N is filled

Proposition 1 The cavity function ¥ (B, t) is the generating function of the centered mo-
menta of the magnetization, examples of which are

d¥n(B,

ha(rﬁ' e (muy)e, (30)
2y (B, 1) .

;j = (my) — (my);. (31)
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Theorem 2 The following relation holds in the thermodynamic [imit:

m(ﬁ}:]n2+tﬁ(ﬁ.r=ﬁ)—,Eiac_;f), (32)

Proof Let us consider again the partition function of a system made up by (N + 1) spins
and point out with 8 the true temperature and with f* = (1 + N—!) the shifted one:

[ =z f N1 T T

8 v
A, = e vVN+l
N+1(B) E v Typo!

TN+
g* . - B .
T L =i NGO T T E <j<N T
:223,&”& H=J=NOI] o JNT 1=i=N % (33)
anN

Now we multiply and divide by Zy (8*) the right hand side of (33), then we take the log-

arithm on both sides and subtract from every member the quantity In Zy_;(8*): expanding
InZy () around g = B* as

InZyy1(B) —InZy 1 (B*) = (B — BH)dgs InZy. 1 (B%) + O((B — B*)°) (34)
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with

g [INEL N\ _E -
B—p —ﬁ( N 1)—2N+0{N ) (35)

we substitute 8 with * inside the state @ and neglecting corrections O(N ') we have:
InZy (B +(B—BH)dgInZy 1 (B7)
: _'{:I_T,.'__.v.'-f:"f 1
=In24+InZy(B%) +Inwy g (e V¥ === L O(N7), (36)

where, with the symbol wy g« we stressed that the temperature inside the Boltzmann average
is the shifted one. Using the variable «(f*) and renaming f* — B in the thermodynamic
limit we get:

a{ﬁ)+ﬁd2—?:]n2+@(ﬁ,r:ﬁ) (37)

and this is the thesis of the theorem. []
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3.3 Saturability and Gauge-Invariance

The next step is to motivate why we introduced the whole machinery: The first reason we
are going to show are peculiar properties of both the filled and the fillable monomials (see
Definition 4). In the thermodynamic limit, the first class do not depend on the perturbation
induced by the cavity field and, at r+ = B, the latter (via the o; — ;05 symmetry) is
projected into the first class. The second reason is that the free energy can be expanded via
these monomials, so a good control of them means a good knowledge of the thermodynamic

of the system.

Theorem 3 In the N — oo limit the averages (m?,.}’} of the filled monomials are t-
independent for almost all values of B, such that

Jlim 3, (my), =0.
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Proof Without loss of generality we will prove the theorem in the simplest case (for {mi.-}};
it will appear immediately clear how to generalize the proof to higher order monomials. Let
us write the cavity function as

Un(B.t)=InZy(B.1) —InZy(p) (38)
and derive it with respect to f: W(B,1) = lim Wy(B,1) = lim In(e¥ Zi=i=n ),
N—oo - N—oo
d¥yn(p.t) N .
—ap = 7 (mk) — (m)). (39)

We can introduce an auxiliary function Ty (8,1) = ({mi.} — {mir},) such that:

2
In(B,t)= Eaﬁwﬁ{ﬁ:f) (40)

and integrate it in a generic interval [ 8, B2 ]:

Ba 4
fﬁ T (. 0dB* = (W (Br.1) — U (. D) @1)

Now we must control ¥y (8,¢) in the N — oo limit; the simplest way is to look at its
t-streaming d, ¥y (B, 1) = (my), such the N-dependence is just taken into account by the
Boltzmann factor inside the averages and, as (my), € [—1, 1], in the thermodynamic limit

¢ (B, t) remains bounded and the second member of (41) goes to zero such that, ¥V [ 5;.58:1,
Tn (B, 1) converges to zero implying (m%), — (m3,). O
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Remark 3 A consequence of this property, in the spin glass theory, turns out to be the sto-
chastic stability of a large class of overlap polynomials [16, 41].

The next theorem is crucial for this section, so, for the sake of simplicity, we split it in two
part: at first we prove the following lemma than it will make us able to proof the core of the
theorem itself which will be showed immediately after. For a clearer statement of the lemma
we take the freedom of pasting the volume dependence of the averages as a subscript close
to the perturbing tuning parameter .

Lemma 1 Let ()y and (), be the states defined, on a system of N spins. respectively by
the canonical partition function £y () and by the extended one Zy (S.t): if we consider the
ensemble of indexes {1y, ...,1,} withr € [1. N]. then for t = B. where the two measures be-
come comparable, thanks to the global gauge symmetry (i.e. the substitution o; — o;051)
the following relation holds

]
oy, —p(0;, -0, ) =wn(0;, - 0,0y5,) + Q(F) (42)

1 . _ e o
where r is an exponent, so if r is even oy, = 1, while if it is odd o | = oN 4.
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Proof Let us write wy , for t = f, defining for the sake of simplicity = =o;, ---0;,:

re

l 2 --.-,-,-m'r}"i—j—. i Oi
EU.'"'-".!:,B(H} — [Z ZN{‘B)EFA_-' E!:r-—.._.f;.'v T ¥ ?T}, (43)

Introducing first a sum over oy, at the numerator and at the denominator, (which is the
same as multiply and divide for 2 because there is still no dependence to o) and mak-
ing the transformation o; — o;0y.1. the variable oy appears at the numerator and it is
possible to build the status at N 4 1 particles with the little temperature shift which vanishes
in the thermodynamic limit:

_ 1
wN,=p(T) =y (Toy, )+ O (E) (44)

Using this lemma we are able to proof the following

Theorem 4 Let (M), be a fillable monomial of the magnetization, (this means that (mM)
is filled). We have:

lim lim(M), = (mM). (45)

N—ooocr—p

Proof The proof is a straightforward application of Lemma 1. ]
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3.4 Self-Consistency of the Order Parameter via its Streaming

Usually it is much simpler to evaluate the internal energy than the free energy because
there is no contribution by the entropy, which. especially in complex system, can make
things much harder: consequently if we learn how to extrapolate information from the cavity
function, which is deeply related to the entropy, we can obtain information for the free
energy. To fulfill this task we state the following theorem.

Theorem 5 When a generic well defined function of the spins F (o) is considered, the fol-
lowing streaming equation holds:

d(Fn(o)):

% = (Fy(o)my), — (Fy(o))(mpy),. (46)

Proof The proof is straightforward and can be obtained by simple derivation:

d(Fn(o)): Z Fn(o)e™ BHN(0) g3 L1<i=<N i
at % Y e o—BHN (@) g% Ticien 0

Z ‘F"\- (J\.l Z]‘_ i<N a; e ﬁH-“"—{ﬁ:g?{T El«:.!-.-..*.-'of
E X, e PN

( Zo Fy (J}f’_ﬁHNm 36'.-{-7' 2 1<t <N i )

Zﬁ g_.BH_-‘-.-'(U:'
Y, A3 iy oie PEN@ er Ticicn i
X( Z g_.BHNEG:' )
= (Fy(o)my): — (Fn (o)) (mn);. [
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We now want to expand the cavity function via filled monomials of the magnetization by
applying the streaming equation (46) directly to its derivative, thanks to (30). It is immediate
to find that the streaming of {my}, obeys the following differential equation

P

3 (my) = (my): — (my); (47)

which, thanks to Theorem 4. becomes trivial in the thermodynamic limit. In fact, calling
m = limy_, o my and skipping the subscript t on limy_. . (m%); = (m?) we obtain

Ly m) =1 ({’”?)
) m?)

which is easily solved by splitting the variables and the solution is f

1

1-x*
(m); =/ (m?) tanh(y/ (m?>)t). (48)

Once evaluated (48) by using the gauge at r = 8 (i.e. (m),—p = (m?)) we get

J(m2) = tanh(B+/(m2)) (49)

which is the well known self-consistency equation for the Ising-model.

1+x

1
dx=—_lo
5 £

1-x
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3.5 The Free Energy Expansion

From (48) it is possible to obtain an explicit expression for the cavity function to plug into
(32) solving for the free energy. In fact we have

I
,}im Uy(p,t)= le1'1111 f dt' (my) _f dt'y/ (m?) tanh(y/ (m (50)
N —=00 N —= 00 0
from which is immediate to solve for ¥ (S, 1):

& (B, 1) = Incosh (v/(m2)1). (51)

The last term still missing to fulfill the expression of the free energy via (32), which is
immediate to obtain, is the internal energy.

Proposition 2 The internal energy of the Ising model is

day(B) B, ,
5 =5 (52)

p

Proof The proof is straightforward and can be obtained by direct calculation on the same
line of the previous proofs. [
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Pasting all together we have

Proposition 3 The free energy of the Ising model is

a(B) =In2 + Incosh(B/(m2)) — g(ﬂml} 2 (53)

4 The Phase Transition
4.1 Breaking Commutativity of Infinite Volume Against Vanishing Perturbation Limits

The motivation of this section can be found, always in the context of spin glasses in [9].

Let us move one step backward and consider (53) at finite N. The receipt to ob-
tain the expression of the free energy via the filled monomial i1s to perform at first
the N — oc limit to saturate the fillable term and then the + — £ limit to free the
measure from the perturbation (making it works as a cavity field). So in other words
a(f) =lim,_.glimy_.~ ay(f, ). But what if we exchange the limits such that a*(f) =
limy_, o lim, , gay(B.1)?

Simply, thanks to the gauge invariance limy_.~ lim,_.g(my) =0 implying ¥ (£,1) =0
defining the high temperature expression for a*(f£), so

a(f) = lm llm c:r-q{,ﬁ' r);é 11m limay(B.1) =a*(B). (54)

ﬂl:{. !ﬂ*ﬁ

Alternatively one can solve (47) for the variable (Ey(o)); by sending first N — o0 and
check that these fluctuations scale accordingly to the paragraph after (3).
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4.2 Critical Behavior: Scaling Laws

Critical exponents are needed to characterize singularities of the theory at the critical point
and, for us, this information is encoded in the behavior of the order parameter / {m?).

Assuming for the moment that 8. = 1 (where f. stands for the critical point in temper-
ature), close to criticality, we take the freedom of writing G(f) ~ G - (8 — 1)¥, where the
symbol ~ has the meaning that the term at the second member is the dominant but there are
corrections of order higher than 7.

The standard way to look at the scaling of the order parameter is by expanding the hy-
perbolic tangent around ./ {m?) ~ 0 obtaining

5 3
v (m?) =tanh(B+/ (m?)) ~ B/ (m?) — P {;ﬂ ) (55)
by which one gets

1
Vm2)(1—pB)+ ;(ﬁwnﬁ})-‘) ~0. (56)
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The first solution of (56) is \/{m?) = 0 (which is also the only solution in the ergodic phase)
while the other two solutions can be obtained by solving

(+/ {mg}]j i M ~ 3(1 — l) (57)

close to the critical point, obtaining

|

J(m2) ~ (B —1)2 (58)

which gives as the critical exponent y = 1/2.
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4.3 Self-Averaging Properties

As a sideline, to try and make the work as close as possible to a guide for more complex
models, it is possible to derive the “locking™ of the order parameter, which, in other context
(i.e. spin glasses) is found as a set of equations called Ghirlanda-Guerra [20] and Aizenman-
Contucci [3], while in simpler systems as the one we are analyzing, not surprisingly [16],
do coincide with just one kind of self-averaging.

The idea we follow [6-8] is deriving filled monomial with respect to the interpolating
parameter, remembering that, in the thermodynamic limit, they do not depend on such a
parameter end evaluating the “fillable™ result (which do depends on ) at r = § to free the
measure from the perturbing cavity field.

Proposition 4 The self-averaging properties, consequence of the invariance of filled mono-
mials with respect the perturbing field, hold in the thermodynamic limit, an example being
3 g

0= lim 8 (my) = (m’), — (m*) (m), = (m*) — (m

N—snoc

2

). (65)
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Remark 6 The self-averaging property of the order parameter is a consequence of self-
averaging of the internal energy

5

lim (Ex)> —(Ex) =0 = (m*)>—(m*)) =0.

Note In this system without disorder the AC relations and the GG identities do coincide
because of the absence of the external average over the noise, which introduce different
kinds of self-averaging as discussed for instance in [18].
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A less known alternative, richer of surprises, emerges again when investigating the cavity
function. Of course in simple system such investigation will not tell us much more than what
showed so far, but, remembering we want to show a working method more than the results

themselves it offers for this particular system, we want to explore this last variant.
Remembering Theorem 4 and Proposition 3 let us rewrite the free energy according to

a(B) =1n2 + Incosh(y/(m),1)],— ﬁ——*\r’ m2) (66)

and emphasize that the total derivative with respect to g is

da () B Hﬂ'(ﬁ) Bﬂf{ﬁ) d+/ (m?)
g~ op 31(’ ap

while, from the general law of thermodynamics [42], we know the total derivative of the free
energy with respect to £ is the internal energy

d”ff L= o) (68)

(67)
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With this preamble let us move evaluating the partial derivative of the free energy still with

respect f:

da(p)
ap 2

— _%(wf{-‘nz})g + (y/ {m?) tanh(y/ (m*) B)

which thanks to self-consistency for the order parameter (49) becomes

1  ——
= ——(+/ {m }) + (v {m} tanh(y/ (m);1))|=p

. g—=an ] :
—5 (V) + (V (m?)’ = 2V (m?)’ (69)
hence
d d 2
a(B) 9y (m?) _o. (70)
3/ (m?) Op
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Let us split the evaluation of (70) in two terms A.B (such that the equation reduces to
A B =0) by defining and evaluating

A =28 _ g /im?) — tanh(B/im2))), )
3./ (m?)
O A o S e T =y 1)

ap 4./ (mj){

Putting together the results A B = 0 we obtain

B/ () —tanh(B/ )~ \/?:Tz}{\/ % — (/i) =0. (73)

This equation acts as a bound and, thought in terms of the expression (70), has a vague
variational taste. As in simple system it does not tell us much more than that the prod-
uct of self-consistency and self-averaging goes to zero faster than N~!, in complex sys-
tem has a key role both in defining the locking of the order parameters [6] as in control-
ling the system at criticality [10]. Furthermore in such equation the two key ingredient for

the behavior of the system, i.e. self-consistency and self-averaging, appear together as a
whole.
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1.1 Stochastic Local Field Alignment

Parallel Dynamics. The microscopic laws governing the parallel evolution of a system of NV
[sing spin neurons a; © { 1,1} are defined as a stochastic alignment to local fields (o).
These fields represent the post-synaptic potentials of the neurons and are assumed to depend

limearly on the instantaneous neuron states:

ai(t+ 1) = sgntanh [Shi(o(f))] + m:(1)] (1.1)
A

hi(or(t) = ) Jijoj(t) +6i(1) (1.2)
=1

The stochasticity 15 in the independent random nambers ;1) (representing threshold noise ),
which are distributed mmiformly over the interval [ 1, 1. The parameter 4 controls the impact
of this noise on the states a;(f + 1). For 3 = oo the random numbers cannot inHuence the

system state and the process becomes deterministic: ay(f + 1) = sgn|hi(e (). The opposite
extreme s choosing 7 = 0, in which case the system evolution becomes fully random. The

external hields #;(t) represent neural thresholds and/or external stimmli. The specific choice
tanh tor the non-linearity in definition (1.1) 18 only relevant for the special case of symmetric
interactions. There it allows us to identity the sequential version of this stochastic dynamies
as a Glanber (1963 ) dynamics with respect to the standard Tsing spin Hamiltonan, and as a
consequence apply standard eguilibrinm statistical mechanies.

The microscopic equations (1.1) can be transtormed directly into equations for the evo-

lution of the microscopic state probability g (o), with o = (a4, .., an ). W eli) is given we
findd
N N Bk (O(1)
n al = — |1 4+ a; tanh| 5h; (e (t = i
Pei1(2) H. g 1+ aitanbifhs(o ()] H| 2 cosh[Fhy o))
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It, instead ot o (), the probability distribution p;(e) 15 given, the above expression generalises

to the corresponding average over the states at time #:

prifo) => Woia' pla') (1.3)

N oy by (o)

'I.:L" [#: l'Tr — ]:[ :
| 2cosh[Bhi (o))

=1

which 1s the Markov equation corresponding to the parallel process (1.1).

Detailed Balance. The results obtained above suggest that symmetric systems, where J;;
Jii tor all (i7), represent a special class. We now show how inferaction symmetry is closely
related to the detailed balance property, and derive a nmmber of consequences. A Markov

process of the form (1.3,1.7), i.e.

priilo) = ZW" oo’ o) (1.17)
T’
W oo’ €[0,1 Y Wleio'] =1
o

(where the conditions on the transition matrix ensure a probabilistic interpretation of pylo) )
15 sald to obey detailed balance it there exists a stationary solution poo(ea) of (1.17) with the

1]'!"{]1]{!'!"1'.}-':
W oo pu(a’) =W [0 0] pu(o)  forallo, o (1.18)
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Let us start describing the “complex” phenomenology:
Generalities on SK model and disordered systems.

A
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Recurrent Networks in Equilibrium

The Hoptield maodel 15 obtained by generalising the recipe (2.1) fo the case of having an

arbitrary mumber p of patterns:

Fignre 2.3: Information storage with the Hopfield model: p = 10 patterns represented as
specific microscopic spin contfigurations in an &V = 841 network.
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