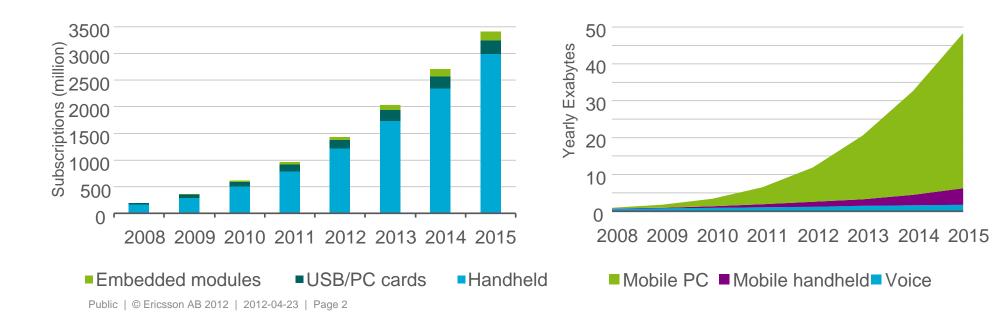


• • 4G MOBILE BROADBAND – LTE PART /

Dr Stefan Parkvall Principal Researcher Ericson Research


DATA OVERTAKING VOICE

> Data is overtaking voice...

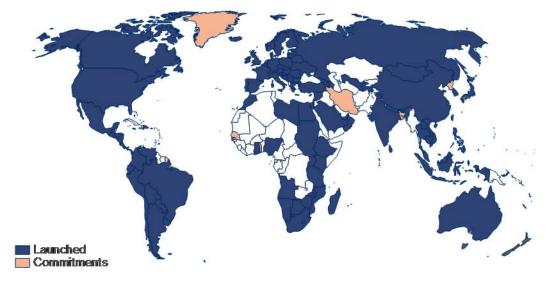
...but previous cellular systems designed primarily for voice

Rapid subscriber growth

MOBILE BROADBAND

> HSPA – High-Speed Packet Access ("Turbo-3G")

- Evolution of 3G/WCDMA
- Data rates up to ~168 Mbit/s (DL), ~44 Mbit/s (UL)
- Support for broadcast services (IMB)


> LTE ("4G")

- Very high data rates in a wide range of spectrum allocations
- Data rates up to 300 Mbit/s (DL), 75 Mbit/s (UL) in frist version
- Integral support for broadcast services

THE 3GPP ECOSYSTEM

333 HSPA operators in 139 countries...

2922 HSPA devices from 255 suppliers...

Source: GSA, WCIS/Informa, and Infonetics

OUTLINE

Series of three seminars

- I. Basic principles
 - Channel and traffic behavior
 - Link adaptation, scheduling, hybrid-ARQ
 - Evolving 3G, inclusion of basic principles in WCDMA

- into 40
- Path towards IMT-Advanced
- III. Standardization
 - How are HSPA and LTE created?
 - ----- destand a second second

RADIO CHANNELS AND PACKET DATA – SOME PROPERTIES

WIRELESS VS WIRELINE

> Wireless seems simple...

$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

WIRELESS VS WIRELINE

Many aspects are similar...

...but there are some fundamental differences!

Wireline

- Cable
- > "No" spectrum limitation
 - Over-provisioning
- > Relatively static channels
 - No fading
- ➤ Congestion ➡ lost packets
- > No mobility

Wireless

- > No cable 😳
- Spectrum is scarce
 - Radio-resource management

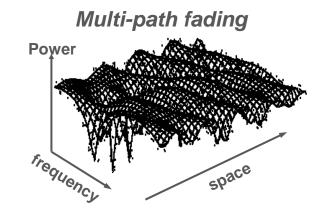
- > Time-varying radio channel
 - Fast fading
- ➤ Fading ➡ lost packets
- Mobility

RADIO-CHANNEL VARIATIONS

> Transmitted power $P_{Tx} \Rightarrow$ received power $P_{Rx} << P_{Tx}$

> Path loss $\propto 1/r^{\alpha}$ $\alpha \approx 2 \cdots 3.5$

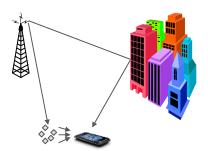
- Given by Tx-to-Rx distance

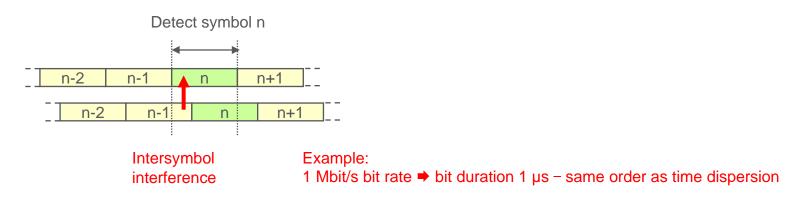

- Log-normal fading
 - Due to random variations in terrain (large scale)
 - Received signal strength in dB given by normal distribution
- > Fast fading
 - Random variations in environment
 - Often modeled by a Rayleigh distribution

ast

RADIO-CHANNEL VARIATIONS

- > Transmitted signal reflected in numerous objects
 - Multiple delayed signal copies received
 - 'Large' and 'small' time differences between components
- > 'Small' delay difference
 - components add constructively...
 ...or destructively
 - Large number of components
 - central-limit theorem
 - Gaussian-distributed amplitude
 - Rayleigh-distributed power (Rayleigh-fading, fast fading)

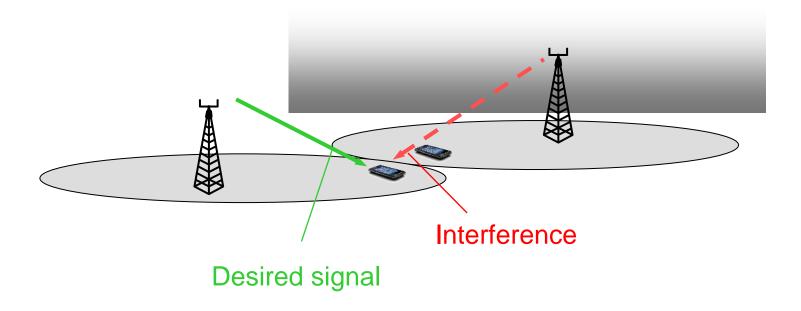




Radio-channels – rapidly varying signal quality

RADIO-CHANNEL VARIATIONS

'Large' delay difference
 Inter-symbol interference (ISI)



- Handling time dispersion through...
 - ...receiver-side signal processing (e.g equalizer)
 - ...transmission scheme robust to time dispersion (e.g. OFDM)

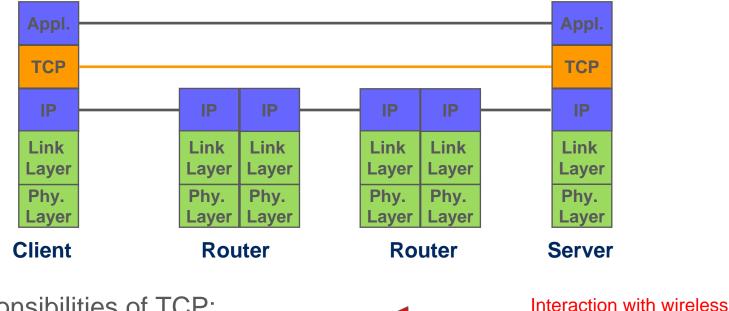
Transmissions in neighboring cells cause interference
 received signal quality affected by neighboring cell activity

TRAFFIC VARIATIONS

- Traditional voice services
 - Low, ~10 kbit/s data rate
 - Fairly constant during the call
- Packet-data services
 - Behavior depends on type of service
 - Typically rapidly and randomly varying rate requirements
 - ('all-or-nothing' resource requirement)

circuit-switched ok!

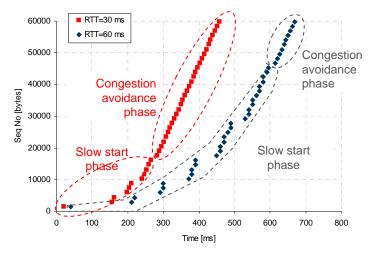
Packet-data systems – rapidly varying data rates


Public | © Ericsson AB 2012 | 2012-04-23 | Page 13

TCP BASICS

links requires attention!

> TCP – Internet's end-to-end transport layer protocol (non-real time)



- Main responsibilities of TCP:
 - provide reliable data transport
 - avoid congestion in the network

TCP BASICS

- > Error recovery and congestion control are intertwined
 - lost packets are used as congestion signal by TCP
 - radio-link errors should be 'hidden' from TCP
 - Lost packets ➡ timeout ➡ slow start
- > TCP congestion management
 - Window = not-yet-ACKed packets in transmission
 - Phase 1: Slow start
 - > Increase window by one on each received ACK
 - > window grows exponentially
 - Phase 2: Congestion avoidance
 - Increse window by 1/window_size on each ACK
 - > window grows linearly

TCP BASICS

- > TCP performance determined by data rate and latency
 - High data rate alone not sufficient need low latency as well
 - Delay-bandwidth product

Length of the pipe: Latency

Width of the pipe: Data Rate

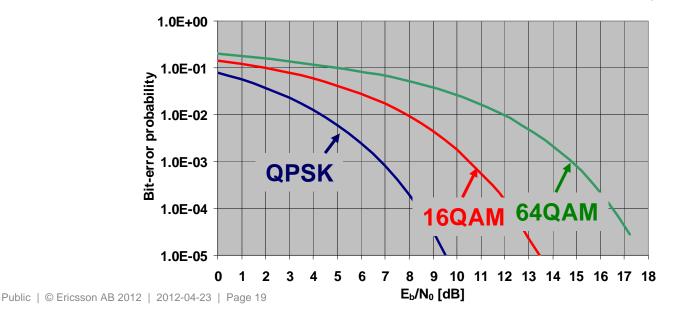
High data rate and low latency

Radio-channel quality varies...
 ...distance to base station
 ...random environmental variations
 ...interference variations

Traffic pattern varies...
 ...user behavior
 ...server load

Adapt to and exploit channel and traffic variations!

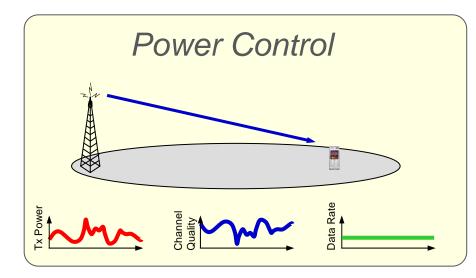
Public | © Ericsson AB 2012 | 2012-04-23 | Page 17

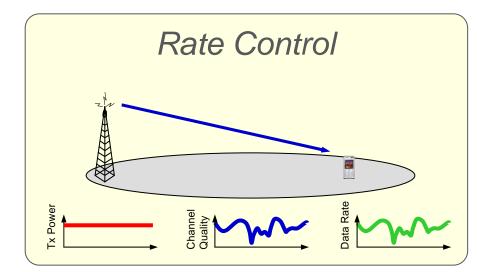


BASIC PRINCIPLES USED BY HSPA AND LTE

- > $E_{\rm b}/N_0$ fundamental quantity in communications
 - $-E_{\rm b}$ received energy per information bit [J]
 - $-N_0$ noise power spectral density [W/Hz]
- > Block-Error Rate vs $E_{\rm b}/N_0$

– Practical schemes – BLER decreases with increasing $E_{\rm b}$





 $\rightarrow N_0$ is given

- Noise etc

How to control E_b despite varying radio-channel quality? - $E_b = P \cdot T = P / R$

- > Packet-data services typically accept (short-term) data-rate variations
 - Internet has unpredictable data rates
 - Short-term variations acceptable even for most services with strict QoS requirements – only cares about average data rate
- Rate control more efficient than power control
 - Power amplifier runs at 'full power all the time'

> Data rate controlled through...

- ...different channel coding rates
 - Advantageous channel conditions
 high code rate
 - Code rates from 1/3 to ~1
- ...different modulation schemes
 - Advantageous channel conditions
 higher-order modulation

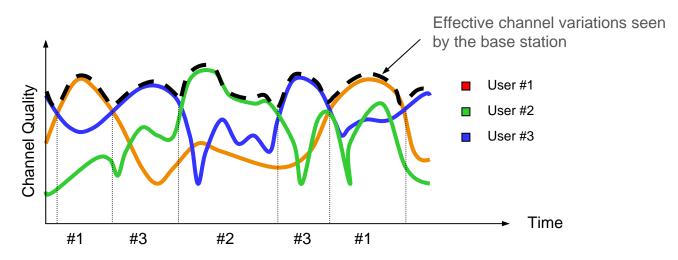
...different multi-antenna schemes

SHARED-CHANNEL TRANSMISSION

Dedicated channel

- Resources assigned at "call setup"
- Independent of instantaneous traffic
- "Circuit-switched"

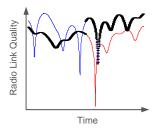
- Shared channel
 - Dynamic sharing of common resource
 - Adapts to instantaneous traffic situation
 - "Packet-switched"

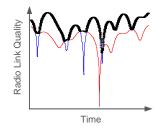


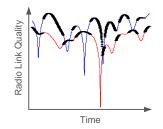
Shared channel – dynamic resource management

Public | © Ericsson AB 2012 | 2012-04-23 | Page 23

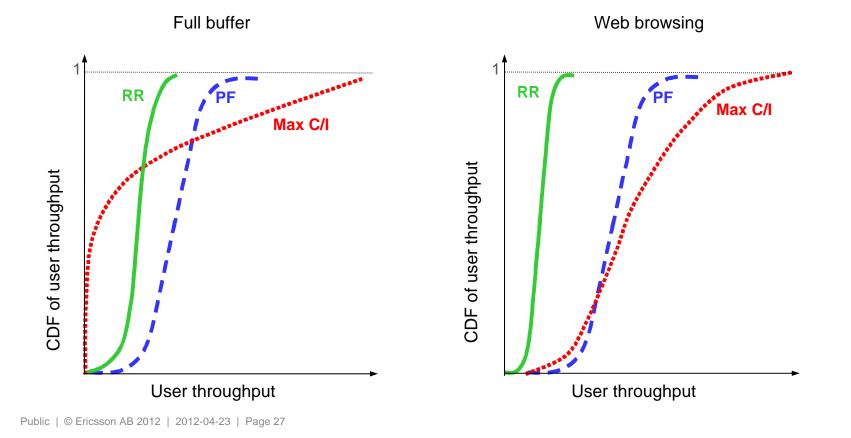
3


- > Scheduling determines at each time instant...
 - ...to whom to assign the shared channel
 - ... which data rate to use (rate adaptation)
- > Basic idea: transmit at fading peaks
 - Known as multi-user diversity





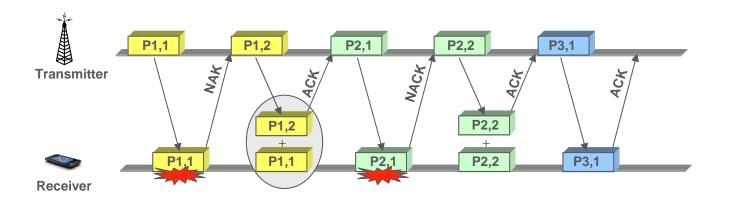
- Cyclically assign the channel to users *without* taking quality conditions into account
- Simple but poor performance
- > Max C/I
 - Assign the channel to the user with the best absolute quality
 - High system throughput but not fair
- > Proportional Fair (PF)
 - Assign the channel to the user with the best relative quality
 - High throughput, fair



Good schedulers take radio and traffic variations into account

- Radio-channel variations
 - Schedule at fading peaks
- Traffic variations
 - Schedule when user has data
 - May take priorities into account
 - > Example: VoIP has higher priority than file download

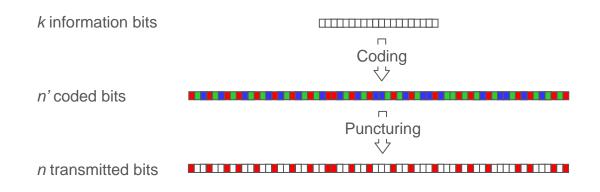
|


The larger the unfairness, the higher the system throughput...
 ...true for full buffers but realistic traffic complicates the picture

HYBRID ARQ WITH SOFT COMBINING

- > Retransmission of erroneously received packets
 - − Fast ⇒ no disturbance of TCP behavior
- Soft combining of multiple transmission attempts
 - Soft combining
 improved performance

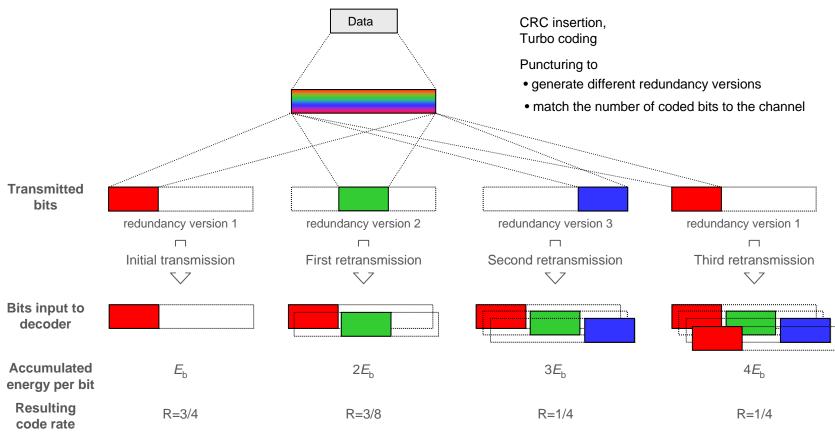
HYBRID ARQ WITH SOFT COMBINING



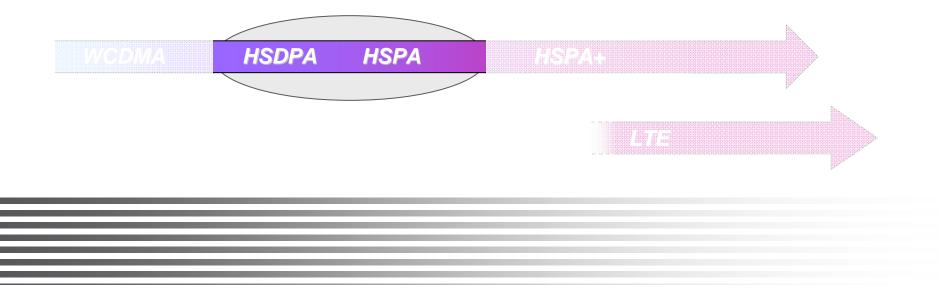
Coding

- Add redundancy at transmitter
- Exploit redundancy at receiver to correct (most) transmission errors
- Code rate R = k/n, code rate fine tuned by puncturing
- The lower the code rate R, the lower the error rate but the higher the overhead

> Hybrid-ARQ


- Correct most errors with coding
- Detect uncorrectable transmission errors, request retransmissions

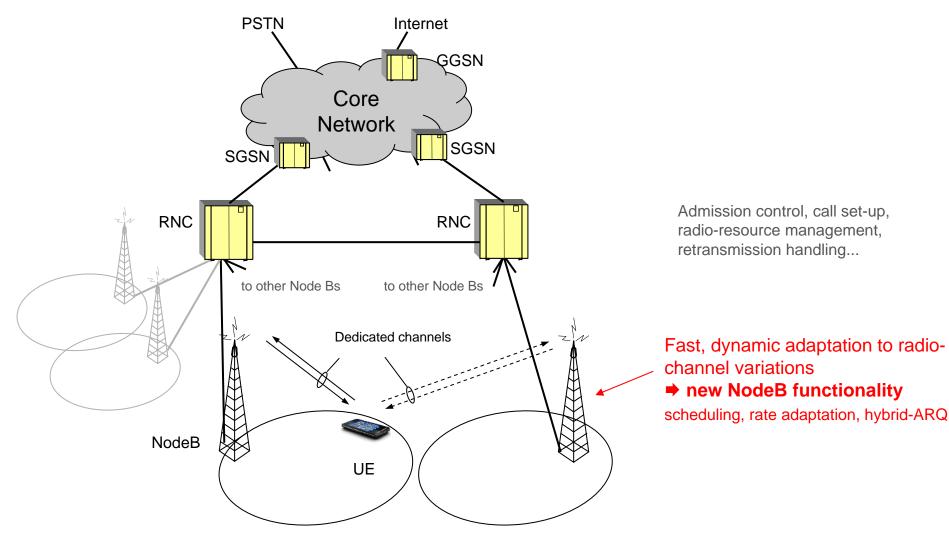
HYBRID ARQ WITH SOFT COMBINING


Incremental redundancy

Public | © Ericsson AB 2012 | 2012-04-23 | Page 30

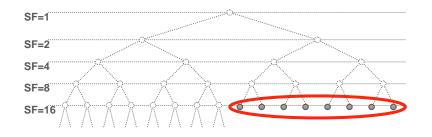
HSPA HIGH-SPEED PACKET ACCESS

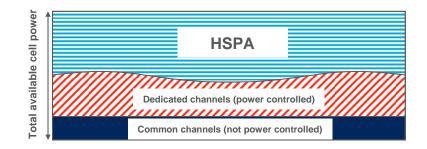
WCDMA BACKGROUND


> WCDMA ("3G")

- Basics developed mid-90's, standard ready -99
- Circuit-switched voice
- "ISDN-like" packet data (typically up to 384 kbit/s)
- > HSPA ("Turbo-3G")
 - Packet-data improvement add-on to WCDMA
 - First version ~2002, still evolving
 - Data rates up to 168 Mbit/s (downlink), 44 Mbit/s (uplink)
- > HSPA is an *evolution* of WCDMA
 - Incorporating the basic principles in an existing 3G network

ARCHITECTURE WCDMA/HSPA

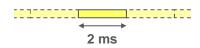


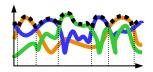


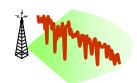
HSPA BASICS - DOWNLINK

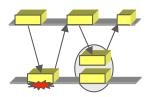
> WCDMA

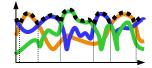
- At call set-up, each user is assigned an orthogonal spreading code
- − Spreading factor ⇒ data rate
- > HSPA evolution of WCDMA
 - Shared set of channelization codes
 - Multi-code transmission





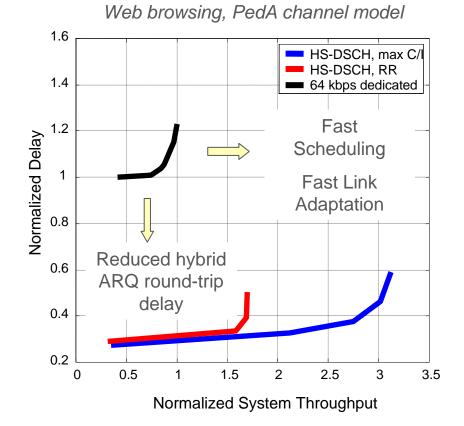

HSPA BASICS – DOWNLINK ≶


- > Shared channel transmission
 - Dynamically shared code resource
- > Short (2 ms) TTI
 - Reduced delays
- Channel-dependent scheduling
 2 ms basis
- Rate control
 - 2 ms basis
- Hybrid-ARQ with soft combining
 Roundtrip time of 12 ms possible



DOWNLINK SCHEDULING

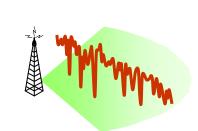
> Each code covers full bandwidth


- channel-dependent scheduling in time-domain only
 - No access to frequency domain
- > Downlink scheduler controls...
 - ...to which user to transmit
 - ...the set of codes to use
 - ...the modulation scheme to use (QPSK, 16QAM, 64QAM)
 - ...the code rate to use
 - ... for each 2 ms transmission interval
- > Scheduling decision informed to terminals on a shared control channel
 - All terminals monitor shared control channels for scheduling decisions

PERFORMANCE EXAMPLE

>~3 times capacity increase

- for web browsing
- less for streaming
- >~3 times lower download time
 - for web browsing
 - large TCP objects (file transfer) can show even larger performance gains
- Scheduling strategy has a large impact on the performance.

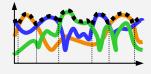

SUMMARY

> Radio channel quality is time varying

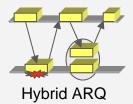
> Traffic pattern is time varying

> Adapt to and exploit...

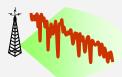
- variations in the radio channel quality
- variations in the traffic pattern
- ...instead of combating them!



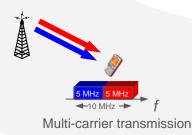
SUMMARY



Shared channel transmission

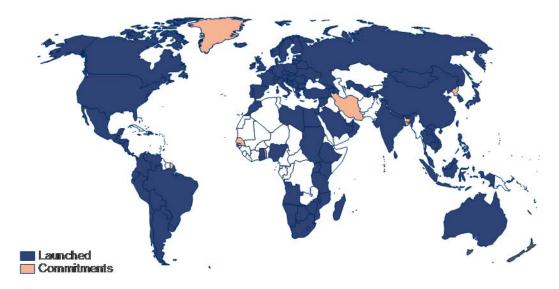


Channel-dependent scheduling



HSPA ("Turbo-3G")

- > Packet-data add-on to WCDMA
- > First version ~2002, still evolving


Rate	control
i cato	00110101

Multi-antenna support

333 HSPA operators in 139 countries...

2922 HSPA devices from 255 suppliers...

Public | © Ericsson AB 2012 | 2012-04-23 | Page 40

Source: GSA, WCIS/Informa, and Infonetics

FOR FURTHER INFORMATION...

Open the 3GPP specifications...

Available in English, Chinese, Korean and Japanese.

ERICSSON