Polarized and unpolarised transverse waves

T. Johnson

Outline

- The quarter wave plate
- Set up coordinate system suitable for transverse waves
- Jones calculus; matrix formulation of how wave polarization changes when passing through polarizing component
- Examples: linear polarizer, quarter wave plate, Faraday rotation
- Statistical representation of incoherent/unpolarized waves
- Stokes vector and polarization tensor
- Poincare sphere
- Muller calculus; matrix formulation for the transmission of partially polarized waves

Modifying wave polarization in a quarter wave plate (1)

- Last lecture we noted that in birefringent crystals:
- there are two modes: O-mode and X-mode

$$
\left\{\begin{array} { l }
{ n _ { o } ^ { 2 } = K _ { \perp } } \\
{ n _ { X } ^ { 2 } = \frac { K _ { \perp } K _ { \| } } { K _ { \perp } \operatorname { s i n } ^ { 2 } \theta + K _ { \| } \operatorname { c o s } ^ { 2 } \theta } }
\end{array} \left\{\begin{array}{l}
\mathbf{e}_{o}(\mathbf{k})=(0,1,0) \\
\mathbf{e}_{X}(\mathbf{k}) \propto\left(K_{\|} \cos \theta, 0, K_{\perp} \sin \theta\right)
\end{array}\right.\right.
$$

- thus if $K_{\perp}>K_{\|}$then $n_{O} \geq n_{X}$ the O-mode has larger phase velocity
- Next describe Quarter wave plates
- uniaxial crystal; normal in z-direction
- length L in the x-direction: $L=\frac{c}{\omega} \frac{\pi / 2}{\sqrt{K_{\|}}-\sqrt{K_{\perp}}}$

- Let a wave travel in the x-direction, then k is in the x-direction and $\theta=\pi / 2$

$$
\left\{\begin{array} { l }
{ n _ { o } ^ { 2 } = K _ { \perp } } \\
{ n _ { X } ^ { 2 } = K _ { \| } }
\end{array} \quad \left\{\begin{array}{l}
\mathbf{e}_{o}(\mathbf{k})=(0,1,0) \\
\mathbf{e}_{X}(\mathbf{k})=(0,0,1)
\end{array}\right.\right.
$$

Modifying wave polarization in a quarter wave plate (2)

- Plane wave ansats has to match dispersion relation
- when the wave entre the crystal it will move slow, this corresponds to a change in wave length, or k

$$
k_{O}=\frac{\omega n_{O}}{c}=\frac{\omega}{c} \sqrt{K_{\perp}}, k_{X}=\frac{\omega n_{X}}{c}=\frac{\omega}{c} \sqrt{K_{\|}}
$$

- since the O - and X -mode travel at different speeds we write

$$
\mathbf{E}(t, x)=\mathfrak{R}\left\{\mathbf{e}_{O} E_{O} \exp \left(i k_{o} x-i \omega t\right)+\mathbf{e}_{X} E_{X} \exp \left(i k_{X} x-i \omega t\right)\right\}
$$

- Assume as initial condition a linearly polarized wave

$$
\begin{aligned}
& \mathbf{E}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]=\left(\mathbf{e}_{O}+\mathbf{e}_{X}\right) \Rightarrow E_{O}=E_{X}=1 \\
& \Rightarrow \mathbf{E}(t, x)=\mathfrak{R}\left\{\mathbf{e}_{O} \exp \left(i k_{O} x-i \omega t\right)+\mathbf{e}_{X} \exp \left(i k_{X} x-i \omega t\right)\right\} \\
& =\mathbf{e}_{O} \cos \left(k_{O} x-\omega t\right)+\mathbf{e}_{X} \cos \left(k_{O} x-\omega t+\Delta k x\right), \Delta k \equiv k_{X}-k_{O}
\end{aligned}
$$

- the difference in wave number causes the O - and X -mode to drift in and out of phase with each other!

Modifying wave polarization in a quarter wave plate (3)

- The polarization when the wave exits the crystal at $x=L$

$$
\begin{array}{lr}
\mathbf{E}(t, x)=\left[\mathbf{e}_{O} \cos \left(k_{O} L-\omega t\right)+\mathbf{e}_{X} \cos \left(k_{O} L-\omega t+\Delta k L\right)\right], & \Delta k x=\pi / 2 \\
=\left[\mathbf{e}_{O} \cos \left(k_{O} L-\omega t\right)-\mathbf{e}_{X} \sin \left(k_{O} L-\omega t\right)\right] & L=\frac{c}{\omega} \frac{\pi / 2}{\sqrt{K_{\mathrm{n}}}-\sqrt{K_{\perp}}}
\end{array}
$$

- This is cicular polarization!
- The crystal converts linear to circular polarization (and vice versa)
- Called a quarter wave plate; a common component in optical systems
- But work only at one wave length - adapted for e.g. a specific laser!
- In general, waves propagating in birefringent crystal change polarization back and forth between linear to circular polarization
- Switchable wave plates can be made from liquid crystal
- angle of polarization can be switched by electric control system
- Similar effect is Faraday effect in magnetoactive media
- but the eigenmode are the circularly polarized components

Optical systems

- In optics, interferometry, polarometry, etc, there is an interest in following how the wave polarization changes when passing through e.g. an optical system.

- For this purpose two types of calculus have been developed;
- Jones calculus; only for coherent (polarized) wave
- Muller calculus; for both coherent, unpolarised and partially polarised
- In both cases the wave is given by vectors \mathbf{E} and \mathbf{S} (defined later) and polarizing elements are given by matrixes J and M

$$
\begin{aligned}
& \mathbf{E}_{\text {out }}=J \bullet \mathbf{E}_{\text {in }} \\
& \mathbf{S}_{\text {out }}=M \bullet \mathbf{S}_{i n}
\end{aligned}
$$

The polarization of transverse waves

- Lets first introduce a new coordinate system representing vectors in the transverse plane, i.e. perpendicular to the \mathbf{k}.
- Construct an orthonormal basis for $\left\{\mathbf{e}^{1}, \mathbf{e}^{2}, \kappa\right\}$, where $\kappa=\mathbf{k} /|\mathbf{k}|$
- The transverse plane is then given by $\left\{\mathbf{e}^{1}, \mathbf{e}^{2}\right\}$, where

$$
\mathbf{e}^{\alpha}=e_{i}^{\alpha} \mathbf{e}_{i}
$$

- where $\alpha=1,2$ and $\mathbf{e}_{i}, i=1,2,3$ is any basis for \mathcal{R}^{3}
- denote \mathbf{e}^{l} the horizontal and \mathbf{e}^{2} the vertical directions

- The electric field then has different component representations: E_{i} (for $i=1,2,3$) and E^{α} (for $\alpha=1,2$)

$$
E_{i}=e_{i}^{\alpha} E^{\alpha}
$$

- similar for the polarization vector, e_{M}

$$
e_{M, i}=e_{i}^{\alpha} e_{M}^{\alpha}
$$

The new coordinates provides 2D representations

Some simple Jones Matrixes

- In the new coordinate system the Jones matrix is 2×2 :

$$
\begin{gathered}
J^{\alpha \beta}=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right] \\
E_{\text {out }}^{\alpha}=J^{\alpha \beta} E_{\text {in }}^{\beta}
\end{gathered}
$$

- Example: Linear polarizer transmitting horizontal polarization

$$
J^{\alpha \beta}{ }_{L, V}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
E_{H} \\
E_{V}
\end{array}\right]=\left[\begin{array}{c}
E_{H} \\
0
\end{array}\right]
$$

- Example: Attenuator transmitting a fraction ρ of the energy
- Note: energy $\sim \varepsilon_{0}|\mathbf{E}|^{2}$

$$
J^{\alpha \beta}{ }_{A t t}(\rho)=\sqrt{\rho}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow \sqrt{\rho}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
E_{H} \\
E_{V}
\end{array}\right]=\sqrt{\rho}\left[\begin{array}{l}
E_{H} \\
E_{V}
\end{array}\right]
$$

Jones matrix for a quarter wave plate

- Quarter wave plates are birefringent (have two different refractive index)
- align the plate such that horizontal / veritical polarization (corresponding to O/X-mode) has wave numbers $\mathbf{k}^{1 /} \mathbf{k}^{2}$

$$
\left[\begin{array}{c}
E_{H}(x) \\
E_{V}(x)
\end{array}\right]=\left[\begin{array}{l}
E_{H}(0) \exp \left(i k^{1} x\right) \\
E_{V}(0) \exp \left(i k^{2} x\right)
\end{array}\right]
$$

- let the light entre the plate start at $x=0$ and exit at $x=L$

$$
\mathbf{E}(L)=\left[\begin{array}{cc}
e^{i k^{1} L} & 0 \\
0 & e^{i k^{2} L}
\end{array}\right]\left[\begin{array}{c}
E_{H}(0) \\
E_{V}(0)
\end{array}\right] \equiv J_{P h} \mathbf{E}(L)
$$

- where Ph stands for phaser
- Quarter wave plates chages the relative phase by $\pi / 2$

$$
k^{1} L-k^{2} L= \pm \pi / 2 \rightarrow J_{Q}=e^{i k^{1} L}\left[\begin{array}{cc}
1 & 0 \\
0 & \pm i
\end{array}\right]
$$

- usually we considers only relative phase and skip factor $\exp \left(i k^{l} L\right)$

Jones matrix for a rotated birefringent media

- If a birefringent media (e.g. quarter wave plates) is not aligned with the axis of our coordinate system with axis of the media
- then we may use a rotation matrix

$$
R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \rightarrow R^{-1}(\theta)=R(-\theta)
$$

- Eigenmode have directions as in the fig.:

$$
\mathbf{E}(x)=E_{M 1}(x)\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]+E_{M 2}(x)\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]
$$

- apply two rotation: first $-\theta$ and then $+\theta$, i.e. no net rotation:

$$
\begin{aligned}
& \mathbf{E}(x)=\underbrace{R(\theta) R(-\theta)}_{\text {no netrotation }}\left(E_{M 1}(x)\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]+E_{M 2}(x)\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]\right)=R(\theta)\left[\begin{array}{l}
E_{M 1}(x) \\
E_{M 2}(x)
\end{array}\right]= \\
& =R(\theta)\left[\begin{array}{cc}
e^{i k^{\prime} x} & 0 \\
0 & e^{i k^{2} x}
\end{array}\right]\left[\begin{array}{c}
E_{M 1}(0) \\
E_{M 2}(0)
\end{array}\right] \rightarrow J_{P h}=R(\theta)\left[\begin{array}{cc}
e^{i k^{\prime} x} & 0 \\
0 & e^{i k^{2} x}
\end{array}\right]
\end{aligned}
$$

Jones matrix for a Faraday rotation

- Faraday rotation is similar to birefrigency, except that eigenmodes have circularly polarized eigenvector

$$
\mathbf{E}(x)=E_{M 1}(x) \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right]+E_{M 2}(x) \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

- there is no useful rotation matrix
- instead use a unitary matrix

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right] \rightarrow U^{-1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]
$$

$$
\mathbf{E}(x)=U^{-1} U\left(E_{M 1}(x)\left[\begin{array}{l}
1 \\
i
\end{array}\right]+E_{M 2}(x)\left[\begin{array}{c}
1 \\
-i
\end{array}\right]\right)=U^{-1}\left[\begin{array}{l}
E_{M 1}(x) \\
E_{M 2}(x)
\end{array}\right]=
$$

$$
=U^{-1}\left[\begin{array}{cc}
e^{i k^{1} x} & 0 \\
0 & e^{i k^{2} x}
\end{array}\right]\left[\begin{array}{c}
E_{M 1}(0) \\
E_{M 2}(0)
\end{array}\right] \rightarrow J_{F R}=U^{-1}\left[\begin{array}{cc}
e^{i k^{1} x} & 0 \\
0 & e^{i k^{2} x}
\end{array}\right]
$$

Outline

- The quarter wave plate
- Set up coordinate system suitable for transverse waves
- Jones calculus; matrix formulation of how wave polarization changes when passing through polarizing component
- Examples: linear polarizer, quarter wave plate, Faraday rotation
- Statistical representation of incoherent/unpolarized waves
- Stokes vector and polarization tensor
- Poincare sphere
- Muller calculus; matrix formulation for the transmission of partially polarized waves

Incoherent/unpolarised

- Many sources of electromagnetic radiation are not coherent
- they do not radiate perfect harmonic oscillations (sinusoidal wave)
- over short time scales the oscillations look harmonic
- but over longer periods the wave look incoherent, or even stochastic
- such waves are often referred to as unpolarised
- To model such waves we will consider the electric field to be a stochastic process, i.e. it has
- an average: < $E^{\alpha}(t, \mathbf{x})>$
- a variance: $<E^{\alpha}(t, \mathbf{x}) E^{\beta}(t, \mathbf{x})>$
- a covariance: $<E^{\alpha}(t, \mathbf{x}) E^{\beta}(t+s, \mathbf{x}+\mathbf{y})>$
- In this chapter we will focus on the variance, which we will refer to as the intensity tensor

$$
I^{\alpha \beta}=<E^{\alpha}(t, \mathbf{x}) E^{\beta}(t, \mathbf{x})>
$$

and the polarization tensor (where $\mathbf{e}_{M}=\mathbf{E} /|\mathbf{E}|$ is the polarization vector)

$$
p^{\alpha \beta}=<e_{M}^{\alpha}(t, \mathbf{x}) e_{M}^{\beta}(t, \mathbf{x})>
$$

The Stokes vector

- It can be shown that the intensity tensor is hermitian
- thus it can be described by four Stokes parameter $\{I, Q, U, V\}$:

$$
I^{\alpha \beta}=\frac{1}{2}\left[\begin{array}{cc}
I+Q & U-i V \\
U+i V & I-Q
\end{array}\right]
$$

- A basis for hermitian matrixes is a set of unitary four matrixes:

$$
\tau_{1}^{\alpha \beta}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \tau_{2}^{\alpha \beta}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \tau_{3}^{\alpha \beta}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau_{4}^{\alpha \beta}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

- where the last three matrixes are the Pauli matrixes
- Define the Stokes vector: $S_{A}=[I, Q, U, V]$

$$
\begin{aligned}
& I^{\alpha \beta}=\frac{1}{2}\left[I\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+Q\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+U\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+V\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right] \\
& I^{\alpha \beta}=\frac{1}{2} \tau_{A}^{\alpha \beta} S_{A} \quad \text { with inverse : } S_{A}=\tau_{A}^{\alpha \beta} I^{\alpha \beta}
\end{aligned}
$$

Representations for the polarization tensor

- The polarization tensor has similar representation
- Note: $\operatorname{trace}\left(p^{\alpha \beta}\right)=1$, thus it is described by three parameter $\{q, u, v\}$:

$$
p^{\alpha \beta}=\frac{1}{2}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+q\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+u\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+v\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right]
$$

- As we will show in the following slides the four terms above represents different types of polarization
- unpolarised (incoherent)
- linear polarization
- circular polarization

Examples

- For example consider:
- linearly polarised wave $e_{M}{ }^{\alpha}=[1,0]$

$$
p^{\alpha \beta}=e_{M}^{\alpha} e_{M}^{\beta^{*}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+1\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)
$$

- i.e. $\{q, u, v\}=\{1,0,0\}$
- rotate linearly polarization by $45^{\circ}, e_{M}{ }^{\alpha}=[1,1] / 2^{1 / 2}$

$$
p^{\alpha \beta}=e_{M}^{\alpha} e_{M}^{\beta^{*}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+1\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)
$$

- i.e. $\{q, u, v\}=\{0,1,0\}$
- a circularly polarised wave, $e_{M}{ }^{\alpha}=[1,-i] / 2^{1 / 2}$

$$
p^{\alpha \beta}=e_{M}^{\alpha} e_{M}^{\beta^{*}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
i
\end{array}\right]\left[\begin{array}{ll}
1 & -i
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+1\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\right)
$$

- i.e. $\{q, u, v\}=\{0,0,1\}$

The polarization tensor for unpolarized waves (1)

- What are the Stokes parameters for unpolarised waves?
- Let the $e_{M}{ }^{l}$ and $e_{M}{ }^{2}$ be independent stochastic variable

$$
p^{\alpha \beta}=<\binom{e_{M}^{1}}{e_{M}^{2}}^{*}\left(\begin{array}{ll}
e_{M}^{1} & e_{M}^{2}
\end{array}\right)>=\left[\begin{array}{ll}
\left\langle e_{M}^{1}{ }^{*} e_{M}^{1}\right\rangle & \left\langle e_{M}^{1}{ }^{*} e_{M}^{2}\right\rangle \\
\left\langle e_{M}^{2}{ }^{*} e_{M}^{1}\right\rangle & \left\langle e_{M}^{2}{ }^{*} e_{M}^{2}\right\rangle
\end{array}\right]
$$

- Since $e_{M}{ }^{l}$ and $e_{M}{ }^{2}$ are uncorrelated the offdiagonal term vanish

$$
p^{\alpha \beta}=\left[\begin{array}{cc}
\left.\left.\langle | e_{M}^{1}\right|^{2}\right\rangle & 0 \\
0 & \left.\left.\langle | e_{M}^{2}\right|^{2}\right\rangle
\end{array}\right]
$$

- The vector \mathbf{e}_{M} is normalised: $\left|e_{M}^{1}\right|^{2}+\left|e_{M}^{2}\right|^{2}=1$
- By symmetry (no physical difference between $e_{M}{ }^{1}$ and $e_{M}{ }^{2}$)

$$
\left|e_{M}^{1}\right|^{2}=\left|e_{M}^{2}\right|^{2}=1 / 2
$$

- the polarization tensor then reads

$$
p^{\alpha \beta}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- i.e. unpolarised have $\{q, u, v\}=\{0,0,0\}$!

The polarization tensor for unpolarized waves (2)

- Alternative derivation; polarization vector for unpolarized waves
- Note first that the polarization vector is normalised

$$
\left|\mathbf{e}_{M}\right|^{2}=\left|e_{M}^{1}\right|^{2}+\left|e_{M}^{2}\right|^{2}=1 \sim \cos ^{2}(\theta)+\sin ^{2}(\theta)
$$

- the polarization is complex and stochastic:
- where θ, ϕ_{1} and ϕ_{2} are

$$
\binom{e_{M}^{1}}{e_{M}^{2}}=\binom{e^{i \phi_{1}} \cos (\theta)}{e^{i \phi_{2}} \sin (\theta)}
$$ uniformly distibuted in $[0,2 \pi]$

- The corresponding polarization tensor

$$
p^{\alpha \beta}=<\binom{e_{M}^{1}}{e_{M}^{2}}^{*}\left(\begin{array}{ll}
e_{M}^{1} & e_{M}^{2}
\end{array}\right)>=<\left(\begin{array}{ll}
e^{-i \phi_{1}+i \phi_{1}} \cos (\theta) \cos (\theta) & e^{-i \phi_{1}+i \phi_{2}} \cos (\theta) \sin (\theta) \\
e^{-i \phi_{2}+i \phi_{1}} \sin (\theta) \cos (\theta) & e^{-i \phi_{2}+i \phi_{2}} \sin (\theta) \sin (\theta)
\end{array}\right)>
$$

- here the average is over the three random variables θ, ϕ_{1} and ϕ_{2}

$$
p^{\alpha \beta}=\frac{1}{(2 \pi)^{3}} \int_{0}^{2 \pi} d \theta \int_{0}^{2 \pi} d \phi_{1} \int_{0}^{2 \pi} d \phi_{2}\left(\begin{array}{cc}
\cos ^{2}(\theta) & e^{-i \phi_{1}+i \phi_{2}} \cos (\theta) \sin (\theta) \\
e^{-i \phi_{2}+i \phi_{1}} \sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- i.e. unpolarised have $\{q, u, v\}=\{0,0,0\}$!

Poincare sphere

- The polarised part of a wave field describes the normalised vector $\{q / r, u / r, v / r\}$ where $r=\sqrt{q^{2}+u^{2}+v^{2}}$ is the degree of polarization
- since this vector is real and normalised it will represent points on a sphere, the so called Poincare sphere
- Thus, any transverse wave field can be described by
- a point on the Poincare sphere
- a degree of polarization, r

Poincare sphere

- A polarizing element induces a motion on the sphere
- e.g. when passing though a birefringent crystal we trace a circle on the Poincare sphere

Outline

- Set up coordinate system suitable for transverse waves
- Jones calculus; matrix formulation of how wave polarization changes when passing through polarizing component
- Examples: linear polarizer, quarter wave plate, Faraday rotation
- Statistical representation of incoherent/unpolarized waves
- Stokes vector and polarization tensor
- Poincare sphere
- Muller calculus; a matrix formulation for the transmission of arbitrarily polarized waves

Weakly anisotropic media

- Next we will study Muller calculus for partially polorized waves
- We will do so for weakly anisotropic media:

$$
K^{\alpha \beta}=n_{0}{ }^{2} \delta^{\alpha \beta}+\Delta K^{\alpha \beta}
$$

- where $\Delta K^{\alpha \beta}$ is a small perturbation
- although Muller calculus is not restricted to weak anisotropy
- The wave equation

$$
\left(n^{2}-n_{0}^{2}\right) E^{\alpha}=\Delta K^{\alpha \beta} E^{\alpha}
$$

- when $\Delta K_{i j}$ is a small, the $1^{\text {st }}$ order dispersion relation reads: $n^{2} \approx n_{0}{ }^{2}$
- the left hand side can then be expanded to give

$$
\begin{aligned}
& n^{2}-n_{0}^{2}=\left(n-n_{0}\right)\left(n+n_{0}\right)=\left(n-n_{0}\right) n_{0}\left[2+\frac{\left(n-n_{0}\right)}{n_{0}}\right] \approx 2 n_{0}\left(n-n_{0}\right) \\
& 2 n_{0}\left(n-n_{0}\right) E^{\alpha} \approx \Delta K^{\alpha \beta} E^{\alpha}
\end{aligned}
$$

The wave equation as an ODE

- Make an eikonal ansatz (assume \mathbf{k} is in the x-direction):

$$
\begin{aligned}
& E^{\alpha}=E_{0}^{\alpha}(t) \exp (i k x)=E_{0}^{\alpha}(t) \exp \left(i \frac{\omega}{c} n_{0} x\right) \exp \left(i \frac{\omega}{c}\left(n-n_{0}\right) x\right) \\
& \frac{d E^{\alpha}}{d x}=i \frac{\omega}{c} n_{0} E^{\alpha}+i \frac{\omega}{c}\left(n-n_{0}\right) E^{\alpha}
\end{aligned}
$$

- The wave equation can then be written as

$$
\frac{d E^{\alpha}}{d x}=-i \frac{n_{0} \omega}{c} E^{\alpha}+i \frac{\omega}{2 c n_{0}} \Delta K^{\alpha \beta} E^{\alpha}
$$

- describe how the wave changes when propagating through a media!
- Wave equation for the intensity tensor:

$$
\frac{d I^{\alpha \beta}}{d x}=\frac{d}{d x}<E^{\alpha} E^{\beta^{*}}>=\ldots=\frac{i \omega}{2 c n_{0}}\left(\Delta K^{\alpha \rho} \delta^{\beta \sigma}-\Delta K^{\beta \sigma^{*}} \delta^{\alpha \rho}\right) I^{\rho \sigma}
$$

The wave equation as an ODE

- The wave equation the intensity tensor is not very convinient
- Instead, rewrite it in terms of the Stokes vector: $S_{A}=\tau_{A}^{\alpha \beta} I^{\alpha \beta}$

$$
\frac{d S_{A}}{d x}=\left(\rho_{A B}-\mu_{A B}\right) S_{B} \quad\left\{\begin{array}{l}
\rho_{A B}=\frac{i \omega}{4 c n_{0}}\left(\Delta K^{H, \alpha \rho} \tau_{A}^{\beta \alpha} \tau_{B}^{\rho \beta}-\Delta K^{H, \sigma \beta} \tau_{A}^{\rho \sigma} \tau_{B}^{\beta \rho}\right) \\
\mu_{A B}=\frac{i \omega}{4 c n_{0}}\left(\Delta K^{H, \alpha \rho} \tau_{A}^{\beta \alpha} \tau_{B}^{\rho \beta}-\Delta K^{H, \sigma \beta} \tau_{A}^{\rho \sigma} \tau_{B}^{\beta \rho}\right)
\end{array}\right.
$$

- we may call this the differential formulation of Muller calculus
- symmetric matrix ρ_{AB} describes non-dissipative changes in polarization
- and the antisymmetric matrix μ_{AB} describes dissipation (absorption)
- The ODE for S_{A} has the analytic solution (cmp to the ODE $y^{\prime}=k y$)

$$
\begin{aligned}
& S_{A}(x)=\left[\delta_{A B}+\left(\rho_{A B}-\mu_{A B}\right) x+1 / 2\left(\rho_{A C}-\mu_{A C}\right)\left(\rho_{C B}-\mu_{C B}\right) x^{2}+\ldots\right] S_{B}(0)= \\
& =\exp \left[\left(\rho_{A B}-\mu_{A B}\right) x\right] S_{B}(0)=M_{A B} S_{B}(0)
\end{aligned}
$$

- where $M_{A B}$ is called the Muller matrix
- $M_{A B}$ represents entire optical components
- we have a component based Muller calculus

Examples of Muller matrixes

- For illustration only - don't memorise!

$$
\begin{aligned}
& \text { Linear polarizer } \\
& \text { (Horizontal Transmission) } \\
& M_{A B}^{L, H}=\frac{1}{2}\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
M_{A B}^{L, 45}=\frac{1}{2}\left[\begin{array}{cccc}
\text { Linear polarizer } \\
\left(45^{\circ} \text { transmission }\right) \\
{\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{array}\right.
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Quarter wave plate } \\
\text { (fast axis horizontal) }
\end{array} M_{A B}^{Q, H}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Attenuating filter (30\% Transmission)
$M_{A B}^{A t t}(0.3)=0.3\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Examples of Muller matrixes

- In optics it is common to connect a series of optical elements
- consider a system with:
- a linear polarizer and
- a quarter wave plate

$$
S_{A}^{\text {out }}=M_{A B}^{Q, H} M_{B C}^{L, 45} S_{C}^{\text {in }}
$$

- Insert unpolarised light, $S_{A}^{i n=[1,0,0,0]}$
- Step 1: Linear polariser transmit linear polarised light

$$
S^{s t e p} 1=M_{B C}^{L, 45}\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{T}=\left[\begin{array}{llll}
1 & 0 & -1 & 0
\end{array}\right]^{T}
$$

- Step 2: Quarter wave plate transmit circularly polarised light

$$
S^{\text {out }}=M^{Q, H}\left[\begin{array}{llll}
1 & 0 & -1 & 0
\end{array}\right]^{T}=\left[\begin{array}{llll}
1 & 0 & 0 & -1
\end{array}\right]^{T}
$$

