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Modifying wave polarization in a quarter wave plate (1)

« Last lecture we noted that in birefringent crystals:
— there are two modes: O-mode and X-mode

no” =K, e, (k)=(0,1,0)

3 KK 3

2 Aol .

n, = e, (k)x|K,cosO, 0, K, sinf
¥ K;sin®0+K,cos’0 () ( : * )

— thusif K > K, then n, =zn,
the O-mode has larger phase velocity

 Next describe Quarter wave plates

— uniaxial crystal; normal in z-direction
C /2

— length L in the x-direction: L =
w VKII - VKJ_

— Let a wave travel in the x-direction, then £ is in the x-direction and 6=x/2

n, =K, [e,(k)=(0,1,0)
n, =K, e,(k)=(0, 0,1)
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Modifying wave polarization in a quarter wave plate (2)

* Plane wave ansats has to match dispersion relation

— when the wave entre the crystal it will move slow, this corresponds to a
change in wave length, or k
wn oo wn oo
ko = > = K , ky= = K,
C C C C

— since the O- and X-mode travel at different speeds we write

E(t,x) = S‘i{eoEO exp(ik,x —iwt) +e, E, exp(ik, x — ioot)}
* Assume as initial condition a linearly polarized wave
E=[1 1 0]=(e,+e,)=E,=E, =1
= E(t,x) = ?ﬁ{eo exp(ik,x —iwt) + e, exp(ik, x — i(ut)}
=e, cos(k,x —wt) +e, cos(k,x —wt + Akx) , Ak =k, -k,

— the difference in wave number causes the O- and X-mode to
drift in and out of phase with each other!
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Modifying wave polarization in a quarter wave plate (3)

The polarization when the wave exits the crystal at x=L

E(t,x) = e, cos(k,L — ot) +e, cos(k,L —wt + AkL)| , Akx =m/2

= [eO cos(k,L —wt) —e, sin(k, L — oot)] c__an

— This is cicular polarization!

— The crystal converts linear to circular polarization (and vice versa)

— Called a quarter wave plate; a common component in optical systems
— But work only at one wave length — adapted for e.g. a specific laser!

— In general, waves propagating in birefringent crystal change polarization
back and forth between linear to circular polarization

— Switchable wave plates can be made from liquid crystal
 angle of polarization can be switched by electric control system

Similar effect is Faraday effect in magnetoactive media
— but the eigenmode are the circularly polarized components
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Optical systems

* In optics, interferometry, polarometry, etc, there is an interest
in following how the wave polarization changes when passing
through e.g. an optical system.

L A
Input \ / Output
beam [ beam
LHP

LP(B) LVP
* For this purpose two types of calculus have been developed;
— Jones calculus; only for coherent (polarized) wave
— Muller calculus; for both coherent, unpolarised and partially polarised
* In both cases the wave is given by vectors E and S (defined
later) and polarizing elements are given by matrixes J and M

Eout = J * Ein
Sout = M * Sin
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The polarization of transverse waves

Lets first introduce a new coordinate system representing
vectors in the transverse plane, i.e. perpendicular to the k.
— Construct an orthonormal basis for {e!,e?,x}, where k=k/|K|

— The transverse plane is then given by {e!,e’}, where o
k
e’ =e'e, £
G’L@ e]
— where o=1,2 and ¢, , i=1,2,3 is any basis for R? %%
o

— denote e’ the horizontal and e’ the vertical directions
The electric field then has different component
representations: E; (for i=1,2,3) and E* (for a=1,2)

E =¢e'E”

— similar for the polarization vector, ¢,,
a o
Cmi =€ Cu

The new coordinates provides 2D representations
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Some simple Jones Matrixes

* |In the new coordinate system the Jones matrix is 2x2:

Job _ ]11 lel
J21 Jzz
E;, =J"E,

 Example: Linear polarizer transmitting horizontal polarization

o [V O] U O][Eu] _[Ea
“ 7o o 0 ol||E,| |0

« Example: Attenuator transmitting a fraction p of the energy
— Note: energy ~ ¢)|E|?

1 0O

1 O
aof _ / s /

EH
E,

b
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Jones matrix for a quarter wave plate

» Quarter wave plates are birefringent
(have two different refractive index)

— align the plate such that horizontal / veritical polarization
(corresponding to O/X-mode) has wave numbers k! / k?

E,(x)] [E,(0)exp(k'x)
E,(x) - E, (0)exp(ik’x)
— let the light entre the plate start at x=0 and exit at x=L
et 0 |[E,0)
E(L) = 2L " = ‘]PhE(L)
0 e E,(0)

— where Ph stands for phaser
* Quarter wave plates chages the relative phase by /2
1 0

0 =
— usually we considers only relative phase and skip factor exp(ik’L)

KL-k’L==xm/2—J, = eile[
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Jones matrix for a rotated birefringent media

 If a birefringent media (e.g. quarter wave plates) is not aligned
with the axis of our coordinate system with axis of the media
— then we may use a rotation matrix

. e2
R(6) = cos(0) -sin(0) E, 1 T

— R7'(0) = R(-0 E
sin(0)  cos(0) ] =KD w/ "
— Eigenmode have directions as in the fig.: 0 >

e1
E(x) = EMI(X) [C9S(e)] + EMz(x)[_Sin(e)]
sin(0) cos(0)
— apply two rotation: first -6 and then +6, i.e. no net rotation:
E(x) = R(O)R(-0)| E (x)[COS(G)I+E (x)[—sin(e)D ~ R(O) EMl(x)} -
MR sin(0) M2 cos(0) E, (x)
ezklx 0 EMl(O) eiklx 0
KOl e EMQ«)J = I ROE, e}
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Jones matrix for a Faraday rotation

« Faraday rotation is similar to birefrigency, except that
eigenmodes have circularly polarized eigenvector

1|1 1|1 S,
Ex)=E, (x)——=|.|+E,,(x)—= _ ™\
M1 . M?2 . = 2y
_ . _ = LN \”“\ ‘-l" 'T'«., Y\J’)
— there is no useful rotation matrix | '\\ I = VL) gr ) N R
. . . - CPN N ;g"'ia"""’ SRE
— instead use a unitary matrix L RS [ |
N Tl
1 1 —1 » 1 1 I Bt magnesic field
= —— — = —
N2 |1 i N2 (1 =i
-1 1 1 | By (X)
E(x)=U"U|E,,,(x)| .|+ E, .| ||=U =
l —1 E, ,(x)
k! !
. el X O EMI(O) L el X O
- U ik’x FR = U ik’x
0 e E, ) 0 e
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Outline

 The quarter wave plate
« Set up coordinate system suitable for transverse waves

« Jones calculus; matrix formulation of how wave
polarization changes when passing through polarizing
component

— Examples: linear polarizer, quarter wave plate, Faraday rotation

« Statistical representation of incoherent/unpolarized waves
— Stokes vector and polarization tensor

» Poincare sphere

 Muller calculus; matrix formulation for the transmission of
partially polarized waves
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Incoherent/unpolarised

Many sources of electromagnetic radiation are not coherent

— they do noft radiate perfect harmonic oscillations (sinusoidal wave)
» over short time scales the oscillations look harmonic
* but over longer periods the wave look incoherent, or even stochastic

— such waves are often referred to as unpolarised

To model such waves we will consider the electric field to be a stochastic
process, i.e. it has

— an average: < E4(tx) >
— avariance: < E%(t,x) EF (t,x) >
— a covariance: < E%(t,x) EF (t+s,x+y) >

In this chapter we will focus on the variance, which we will refer to as the
intensity tensor

[%P= < E%(1,X) EP (1,x) >
and the polarization tensor (where e¢,,=E / |E| is the polarization vector)
PP =<e (tx) e (1,x)>
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The Stokes vector

« |t can be shown that the intensity tensor is hermitian
— thus it can be described by four Stokes parameter {L,Q,U,V} :
1 [ I+0 U-iV

2lUu+iv I-0

P =
g)

* A basis for hermitian matrixes is a set of unitary four matrixes:

r‘*ﬁ=1 0 1:&B=1 0 75aﬁ=()1 1:O“o —
: o 1/ * \o -1/ ° 1 o) * i 0

— where the last three matrixes are the Pauli matrixes
» Define the Stokes vector: S =[1,Q,U, V]

il e Sell o 3]

1 o
1 = ErZﬁS . withinverse: S, =15 1%
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Representations for the polarization tensor

* The polarization tensor has similar representation
— Note: trace(p®P)=1, thus it is described by three parameter {g,u,v} :

ot o el el )

* As we will show in the following slides the four terms above
represents different types of polarization
— unpolarised (incoherent)
— linear polarization
— circular polarization
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Examples

 For example consider:
— linearly polarised wave e,,*=[1,0]

SRR

* e {qu,v;={1,0,0}
— rotate linearly polarization by 45°, e, *=[1,1]/ 22

o2 - -2 0 )

> l.e. {q,u,v}={0,1,0}
— a circularly polarised wave, e, *=[1,-i] / 217

e wai =2 -2 32 )

e i.e. {quv}={0,0,1}
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The polarization tensor for unpolarized waves (1)

 What are the Stokes parameters for unpolarised waves?

Let the ¢,/ and ¢,/ be independent stochastic variable
1\ 1% 1 1% 2
e <€, €, > <e, €, >
o _ M 1 2 _ M M M =M
P =<\ (eM eM)>_ 2 % 1 2% 2
ey <e, e,> <e, e, >
Since ¢,/ and ¢,/ are uncorrelated the offdiagonal term vanish
el P> 0 ]

2 2
0  <lé P>

p* =

The vector e,, is normalised: ‘e}w ‘2 + ‘e; ‘2 =1
By symmetry (no physical difference between ¢,/ and ¢,/ )
‘e}w‘z = ‘e@‘z =1/2
the polarization tensor then reads
o 110
pP = —
210 1
l.e. unpolarised have {q,u,v}={0,0,0}!
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The polarization tensor for unpolarized waves (2) %

 Alternative derivation; polarization vector for unpolarized waves
— Note first that the polarization vector is normalised

2 1|2 2 |2 2 . 2
e, | =le,| +le,| =1~cos™(0)+sin"(0)

1 i
' cos(0
— the polarization is complex and stochastic: ef) = (e ( ))
€y

97 o3
* where 0, ¢, and ¢, are e”* sin(b)
uniformly distibuted in [0,2x]

* The corresponding polarization tensor

of (e}w )* | ) (ei¢l+i¢1 cos(B)cos(B) e "2 cos(0) sin(B))
p? =< (e eM) >=< >

er ) M e 2" sin(@)cos(B) e 272 sin(0) sin(6)

— here the average is over the three random variables 0, ¢, and ¢,

cos’(0) e 12 cog(0)sin(0) 110
e”"2*®1 5in(09) cos(0) sin”(0) 0 1

o o { 49 { do, [ do,

0

2

— l.e. unpolarised have {q,u,v}={0,0,0}!
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Poincare sphere

« The polarised part of a wave field describes the normalised
vector {g/r,u/r,v/r} Where r=+/g> +u* +v* is the degree of polarization

— since this vector is real and normalised it will represent points on a
sphere, the so called Poincare sphere

« Thus, any transverse wave field can
be described by >

— a point on the Poincare sphere

— a degree of polarization, r Poincare sphere

* A polarizing element induces a motion on the sphere

— e.g. when passing though a birefringent crystal we trace a circle on the
Poincare sphere
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Outline

e Set up coordinate system suitable for transverse waves

« Jones calculus; matrix formulation of how wave
polarization changes when passing through polarizing
component

— Examples: linear polarizer, quarter wave plate, Faraday rotation

« Statistical representation of incoherent/unpolarized waves
— Stokes vector and polarization tensor

« Poincare sphere

 Muller calculus; a matrix formulation for the transmission
of arbitrarily polarized waves

13-02-15 Electromagnetic Processes In Dispersive Media, Lecture 6 20




Weakly anisotropic media

Next we will study Muller calculus for partially polorized waves
We will do so for weakly anisotropic media:

K =n, 8" + AK*

— where AK%f is a small perturbation
— although Muller calculus is not restricted to weak anisotropy

The wave equation
(n* =n)’)E“ = AK"E*

— when AK; is a small, the 1%t order dispersion relation reads: n*~n’
— the left hand side can then be expanded to give

(n—-n,)

n® - ng =(n-ny,)(n+n,) =(n-ny)n, [2 + ] ~2n,(n—n,)

n

2n,(n -n,)E* ~ AKE*®
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The wave equation as an ODE

« Make an eikonal ansatz (assume k is in the x-direction):

E® = EJ(t)exp(ikx) = Eg(t)exp(ignox)exp(ig(n - no)x)
c

C
a
dE — iﬂ n,E® + 19(11 _ nO)Ea same expression as
dx c c on previous page!

 The wave equation can then be written as

dE*
— i T pe i D AKPE"
dx C 2cn,

N,y

— describe how the wave changes when propagating through a media!
« Wave equation for the intensity tensor:

I d *
=—<E"E" >=..=
dx dx 2cn,

10

(AK‘*F’&B" — AKP g )190
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The wave equation as an ODE

 The wave equation the intensity tensor is not very convinient
- Instead, rewrite it in terms of the Stokes vector: S, =31

ds,
dx

= (pAB —Wyp )SB

Pap =

Wap =

4cn,

16
(AK Hapghogtb _ AK" "’ﬁrfft%p)
4cn,
16

H op_po__pp H of pofp
(AK T, Ty —AK" 7T, Ty, )

— we may call this the differential formulation of Muller calculus
— symmetric matrix p, describes non-dissipative changes in polarization
— and the antisymmetric matrix u,, describes dissipation (absorption)

« The ODE for §, has the analytic solution (cmp to the ODE y '=ky)
S,(x) = [6AB + (pAB — Wyp )x + 1/2(pAC — Wye )(pCB — Wep )x2 + "‘]SB 0) =

= exp[(pAB - MAB)X:ISB 0) =M ,;55(0)

— where M, is called the Muller matrix

— M, represents entire optical components
« we have a component based Muller calculus

13-02-15
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Examples of Muller matrixes

« For illustration only — don’'t memorise!

Linear polarizer Linear polarizer
(Horizontal Transmission) §450 transmission)_
I 1 0 O I 0 -1 O
v 1|1 100 s _1]0 000
210 00 0 oo2-1 0 100
0 000 0 0 0 0
Quarter wave plate Attenuating filter
(fast axis horizontal) (30% Transmission)
1 0 0 O I 0 0 O
O 1 0 O O 1 0 O

MQ’H _ Att _
A8 0O 0 0 -1 M5 ©-5) 0'30 O 1 O
00 1 0 0 0 0 1
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Examples of Muller matrixes

* In optics it is common to connect a series of optical elements
e consider a System with: Quarter Wavelength Retardation Plate Action

Retarder
. . Optical Axis
— a linear polarizer and

°1-Orientation

Input

Norlm-PlodIarltzed Polg zation C |
— nciden
d quarter wave plate Illumlnguon I\ane Pgl?:i:gg

Output
out _ O.H L 45 ¢in

Quarter
Wavelength
Retardation

Polarizer Plate

 Insert unpolarised light, S,”=[1,0,0,0]
— Step 1: Linear polariser transmit linear polarised light

s =MES[1 0 0 o] =1 0 -1 o]

— Step 2: Quarter wave plate transmit circularly polarised light

s =M1 0 -1 0] =[1 0 0 -1]
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