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Simulation of electricity markets 
using Monte Carlo methods

• Actors in the electricity market might use the 
simulation to evaluate if an investment is beneficial 
or not

• The government might use the simulation to see 
what consequences a certain regulation have on 
electricity prices, environment, etc before realizing 
it

Why do a simulation?
- predict the long-term behavior of an electricity market

by calculating indices such as EENS, LOLP and ETOC
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• Lecture L15: Monte Carlo
• Content:

1. Basics about Monte Carlo
2. Simple sampling
3. Convergence criteria
4. Random number generation
5. Inverse transform method
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• When it is too complicated to calculate 
expected values theoretically.

Basics: 
–Why use Monte Carlo simulations?
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Use Monte Carlo if  fx(x) is 
unknown or the integral is 

difficult to calculate!
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Basics:
- Why use Monte Carlo to simulate the   

electricity market?

• Remember we are interested in system indices 
such as EENS, LOLP and ETOC! These are 
expected values of result variables

 Monte Carlo simulation

• The electricity market is complicated to predict! 
Sometimes we need more complicated models 
than probabilistic production cost simulation 
(PPS). For example if we want to consider:
– Transmission limitations
– Transmission losses
– Correlations between stochastic variables
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Basics: 
–What is Monte Carlo simulation?

• The scenario parameters, Y, have known probability 
distributions (input).

• Mathematical model (known), g, of the system we want 
to simulate

• The result variables, X, have unknown probability 
distributions (output).

g
Y X=g(Y)
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The purpose of the simulation is to study the 
probability distribution for X

• Reconstruct the whole distribution (estimate fX)
• Estimate statistical measures such as the 

expected value, E[X], and the variance, Var[X]

g
Y X=g(Y)

Basics: 
–What is Monte Carlo simulation?
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• Basic principal:
– The expected value of a random variable can be 

determined by random observations of the 
variable.

• The expected value can be estimated:
– Expected value = The mean value of an infinite 

number of observations of a random variable

Basics: 
–What is Monte Carlo simulation?
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• It is not possible to perform an infinite number 
of samples/observations. However, the more 
observations we use the ”better” estimation of 
the expected value we get.

• Simple sampling: Estimation of the expected 
value by taking the mean value of a sufficient 
number of independent observations

Basics: 
–What is Monte Carlo simulation?
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• Lecture L15: Monte Carlo
• Content:

1. Basics about Monte Carlo
2. Simple sampling
3. Convergence criteria
4. Random number generation
5. Inverse transform method
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Simple sampling
• Theorem 6.21

If there are n independent observations, x1, …, 
xn, of the random variable X then the mean of 
these observations, i.e., 

is an estimate of E[X].





n

i
iX x

n
m

1

1

12

Simple sampling
Thus:
• mX is an estimation of E[X]

• mX is a random variable (since it is a mean of 
observations of a random variable)

• The expected value of mX is the same as the 
expected value of X:
E[mX] = E[X]
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Simple sampling
• The variance of the estimate, Var[mX], is 

interesting because it states how much an 
estimate might deviate from the true value.

x x

1Xmf 2Xmf

X X

Remember: X=E[mX] =E[X]
This is what we want!

Var[mX1] large! Var[mX2] small!

Here mX1 is likely to be less accurate than mX2.
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Simple sampling
• Want a sufficient accurate estimate. Use the 

estimate’s variance.

• Theorem 6.22 :

The variance of the estimate from simple sampling is:

n
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=> The more observations/samples we use the more 
likely is it that we get a more accurate result
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Simple sampling

Example 6.20

Problem:
• Tossing a coin
• Calculate the probability distribution for the 

average outcome of tossing the coin 1,2,10,100 
and 1000 times.

Solution:
• For a complete solution see the compendium.
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Simple sampling
• Let Ci be the result of tossing a coin:

Heads => Ci=1
Tails => Ci=0

– Hn: the average outcome of n throws is
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– Hn is a random variable since it is the sum of 
random observations

– We want to study the probability function of Hn
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Simple sampling
• Remember from before:

where mx is the estimation of E[X]

• Here we instead have:

where Hn is the estimation of E[C]
In this case E[C] is simple to calculate theoretically:

 [ ] 0.5 0 0.5 1 0.5E C C discrete     

E[mX] = E[X]

E[Hn] = E[C]

since [ ] ( )X
x

E X x f x 
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Simple sampling
• One trial:

C1
Probability 

[%] H1

0 50 0

1 50 1

1Hf

H1
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Simple sampling

C1 C2
Probability

[%]
H2

0 0 25 0

0 1 25 0.5

1 0 25 0.5

1 1 25 1

Two trials:

2Hf

H2
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Simple sampling

10Hf

H10

• Ten trials:
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Simple sampling

100Hf

H100

• Hundred trials:
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Simple sampling

1000Hf

H1000

• Thousand trials:
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Simple sampling

• To conclude: More samples increase the 
likelihood that our estimation is close to the true 
expected value (more accurate).

• BUT: The more samples we take, the longer 
simulation times we get!

• How many samples should we take??
– We need a convergence criteria to say when to end 

the simulation!
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• Lecture L15: Monte Carlo
• Content:

1. Basics about Monte Carlo
2. Simple sampling
3. Convergence criteria
4. Random number generation
5. Inverse transform method
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Convergence criteria

• Two different methods:
1. Predefined number of samples

(intuition or calculated)
2. Study the  coefficient of 

variation, a
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1. Predetermined number of samples 
(intuition or calculated) 

• See Exampel 6.21 in the compendium on 
how to calculate the number of samples n

Convergence criteria
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2. Study the coefficient of variation, a
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Var[mX] is not known during the simulation but it can 
be estimated using Theorem 6.22:
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Convergence criteria
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2. Contin.: Study the coefficient of variation, a

How is this done?
Step 1. Choose a number of samples, n.
Step 2. Calculate Var[X] according to:

 calculate a, see previous slide

Step 3. Test if a < ? (=tolerance limit)
Yes Simulation done.
No  Generate some more samples and add those 

to the existing samples. Go to step 2.
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Convergence criteria
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+- one standard deviation
Estimation of  mX as a function of  the number of  samples used

mX

Number of samples

Convergence criteria
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• Lecture L15: Monte Carlo
• Content:

1. Basics about Monte Carlo
2. Simple sampling
3. Convergence criteria
4. Random number generation
5. Inverse transform method
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The principal of simple 
sampling

Random 
number 
generator

Inverse
transform
method

g
Mathematical 

model
Sampling

X mXYU

• Y: Indata, random variables that have known 
probability distributions (scenario parameters).

• g: Mathematical model of the system we want to 
simulate.

• X: output, random variables that have unknown 
probability distributions (result variables).

• is an estimation of E[X].
• U is a random variable that is uniformed distributed in 

the interval [0 1], hence U(0,1)-distributed.

mX
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Random number generation
• We want random numbers that are U(0,1):

– Use Matlabs rand.
• But how does Matlabs rand work?

– rand is a radnom number generator that 
generates pseudorandom number.

– A pseudorandom number is not a “real” random 
number but it is as good as it gets.

– Given a seed (a certain number) the random 
number generator generates a long sequence of 
random numbers before repeating itself. 

– A good pseudorandom number generator 
produces a sequence which closely mimics the 
properties of a U(0, 1)-distribution and where 
the correlations between the random numbers 
are negligible.
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• Lecture L15: Monte Carlo
• Content:

1. Basics about Monte Carlo
2. Simple sampling
3. Convergence criteria
4. Random number generation
5. Inverse transform method
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The principle for simple 
sampling

Random 
number 
generator

Inverse
transform
method

Sampling
X mXYU

mX

g
Mathematical 

model

• g: Mathematical model of the system we want to 
simulate.

• X: output, random variables that have unknown 
probability distributions (result variables).

• Y: Indata, random variables that have known 
probability distributions (scenario parameters).

• is an estimatation of E[X].
• U is a random variable that is uniformed distributed in 

the interval [0 1], hence U(0,1)-distributed.
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Inverse transform method
• It is not likely that the scenario parameters Y are 

U(0, 1)-distributed

• Hence we want to translate our random number U 
to a random number from Y:s probability 
distribution!

Use the inverse transform method:

Theorem E.1.:

If a random variable U is U(0, 1)-
distributed then the random 
variable Y=FY

-1(U) has the 
distribution function FY(y).
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• Remember the definition for the distribution function:

take values between 0 och 1.

Define:

Note that we can use           instead of

The duration curve is more interesting in our 
application to the electricity market.

Inverse transform method

1 1( ) ( ) ( ( ))Y Y Y YY F U F y F F U U    

( ) ( )YF y P Y y  

( )YF y

( )YF y

( )YF y
( ) ( ) 1 ( ) 1 ( )Y YF y P Y y P Y y F y      
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Inverse transform method
• Easiest to understand from a figure:

Y
y

U

( )YF y
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Inverse transform method

• Often Y is normally distributed with the distribution 
function

• BUT does not exist!
 Use the approximation of

Explained in the compendium in Theorem E.2.

( )y

1( )y

1( )y
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The most important from 
today:

• The inverse tranform method

• The principal for simple sample
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Next time:
• Remaining: Apply Monte Carlo simulations to 

the electricity market

Objective
Predict the long-term behavior of an electricity 
market

Who has an interest to do this?
– Actors in the electricity market might use the 

simulation to evaluate if an investment is 
beneficial or not

– The government might use the simulation to see 
what consequences a certain regulation have on 
electricity prices, environment, etc before 
realizing it


