11 Networked Control Systems

SOLUTION 11.1

Matrix Exponential The exponential of A, denote by e^A or $\exp(A)$, is the $n \times n$ matrix given by the power series

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

The above series always converges, so the exponential of A is well defined. Note that if A is a 1×1 matrix, the matrix exponential of A is a 1×1 matrix consisting of the ordinary exponential of the signal element of A. Thus we have that

$$e^A = I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$$

since A * A = 0.

We can find e^A via Laplace transform as well. As we know that the solution to the system linear differential equations given by

$$\frac{d}{dt}y(t) = Ay(t), \quad y(0) = y_0,$$

is

$$y(t) = e^{At}y_0.$$

Using the Laplace transform, letting $Y(s) = \mathcal{L}\{y\}$, and applying to the differential equation we get

$$sY(s) - y_0 = AY(s) \Rightarrow (sI - A)Y(s) = y_0$$
,

where I is the identity matrix. Therefore,

$$y(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}y_0.$$

Thus, it can be concluded that

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\},\,$$

from this we can find e^A by setting t=1. Thus we can have

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\} = \mathcal{L}^{-1}\left\{\begin{bmatrix} \frac{1}{s} & \frac{1}{s^2} \\ 0 & \frac{1}{s} \end{bmatrix}\right\} = \begin{bmatrix} u(t) & tu(t) \\ 0 & u(t) \end{bmatrix}.$$

We obtain the same result as before if we insert t=1 into previous equation.

SOLUTION 11.2

Stability The eigenvalue equations for a matrix Φ is

$$\Phi v - \lambda v = 0$$
,

which is equivalent to

$$(\Phi - \lambda I)v = 0,$$

where I is the $n \times n$ identity matrix. It is a fundamental result of linear algebra that an equation Mv = 0 has a non-zero solution v if and only if the determinant $\det(M)$ of the matrix M is zero. It follows that the eigenvalues of Φ are precisely the real numbers λ that satisfy the equation

$$\det(\Phi - \lambda I) = 0.$$

The left-hand side of this equation can be seen to be a polynomial function of variable λ . The degree of this polynomial is n, the order of the matrix. Its coefficients depend on the entries of Φ , except that its term of degree n is always $(-1)^n \lambda^n$. For example, let Φ be the matrix

$$\Phi = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix} .$$

The characteristic polynomial of Φ is

$$\det(\Phi - \lambda I) = \det\left(\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) = \det\begin{bmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 4 \\ 0 & 0 & 9 - \lambda \end{bmatrix},$$

which is

$$(2 - \lambda)[(3 - \lambda)(9 - \lambda) - 16] = 22 - 35\lambda + 14\lambda^2 - \lambda^3$$
.

The roots of this polynomial are 2, 1, and 11. Indeed these are the only three eigenvalues of Φ , corresponding to the eigenvectors [1,0,0]',[0,2,-1]', and [0,1,2]'.

Given the matrix $\Phi = \text{diag}([-1.01, 1, -0.99])$, we plot following image, in which we can distinguish stable, asymptotical stable and instable state.

Figure 11.2.1: The stability, asymptotical stability and instability.

SOLUTION 11.3

Modeling

The dynamic for the state vector using Cartesian velocity, $(x, y, v_x, v_y, \omega)^T$, is given by:

$$\begin{aligned} \dot{x} &= v_x \\ \dot{y} &= v_y \\ \dot{v_x} &= -\omega v_y \\ \dot{v_y} &= \omega v_x \\ \dot{\omega} &= 0 \, . \end{aligned}$$