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Emission from free particles 
(Chapters 18-19) 

T. Johnson 



•  Repetition: the emission formula and the multipole expansion 
•  The emission from a free particle - the Larmor formula  
•  Applications of the Larmor formula 

–  Harmonic oscillator 
–  Cyclotron radiation 
–  Thompson scattering 
–  Bremstrahlung 

•  Relativistic generalisation of Larmor formula 
–  Repetition of basic relativity 
–  Co- and contra-variant tensor notation 
–  Lorentz transformation and relativistic invariants 
–  Relativistic Larmor formula 

•  The Lienard-Wiechert potentials 
–  Inductive and radiative electromagnetic fields 
–  Alternative derivation of the Larmor formula 

•  Abraham-Lorentz force 

Outline 
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Repetition: Emission formula 
•  The energy emitted by a wave mode M (using antihermitian part of 

the propagator), when integrating over the δ-function in ω   

–  the emission formula  
–  thus UM is a density of emission in k-space  

•  Alternatively, the emission per unit frequency and solid angle (dΩ)   
–  for non-spatially dispersive media 
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Repetition: The current expressed in multipole moments 

•  Multipoles moments are related to Fourier transform of the current: 

Emission formula  
(k-space power density) 
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Repetition: Emission in the time-domain 
•  The total radiated power from a dipole 

–  interpreted as a time average power 
–  ideally the averaging should beperformed over all times 

•  for event, or periodic motion, averaging can be done over finite times 
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Dipole current from single particle 

•  Current from a single particle: 

•  Dipole approximation exp[ikx]~1 ; but what is the error? 
–  Assume oscillating motion: 

•  for non-oscillating motion: emission of quanta ω occures on time-scale t~1/ω 
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Relation between emission and acceleration 

•  Emission from single particle; dipole current: 

•  Note that                            is the acceleration: 

–  Thus emission from free particle is a response to acceleration! 

•  Power radiated for isotropic transverse waves: 
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The Larmor fomula 
•  The emission integrated over all frequencies is related to time 

integral of the emitted power 
–  in vacuume (nM=1) 

–  the Larmor formula related the averaged radiated power with  
the average acceleration 

•  The time average has the same interpretation as for dipole and is 
sometimes written 

–  but should always be interpreted as an average! 
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Applications: Harmonic oscillator 
•  As a first example, consider the emission from a particle performing 

an harmonic oscillation 
–  harmonic oscillations in one dimesion X  

–  Larmor formula: the emitted power associated with this acceleration 

–  oscillation cos2(ω0t) above is not physical; average over a period 
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Applications: Harmonic oscillator – frequency spectum 
•  Express the particle as a dipole d, use truncation for Fourier 

transform 

•  The time-averaged power emitted from a dipole 
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Applications: cyclotron emission 
•  An important emission process from magnetised particles is from 

the acceleration involved in cyclotron motion 
–  consider a charged particle moving in a static magnetic field B=Bzez   

–  where we have the Larmor radius 
–  This describe circular motion around magnetic field lines of force called 

the Larmor- or cyclotron-motion 
–  The period averaged radiation: 

–  Magnetized plasma; power depends on the temperature: 
•  Electron cyclotron emission is one of the most common  

ways to measure the temperature of a fusion plasma! 
13-02-27 11 Dispersive Media, Lecture 8 - Thomas Johnson 

€ 

a(t) = ˙ v (t) =
q
m

v × B = −Ωez × v  ,   Ω =
qB
m

˙ v x
˙ v y
˙ v z

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

0 Ω 0
−Ω 0 0
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

vx

vy

vz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⇒

vx (t)
vy (t)
vx (t)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

v⊥sin(Ωt)
v⊥cos(Ωt)

v||

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⇒

x(t)
y(t)
z(t)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

ρL cos(Ωt)
ρL sin(Ωt)

v||t

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

€ 

ρL = v⊥/Ω

€ 

P = q4B2v⊥
2

12πε0c
3m2

€ 

P ∝ v⊥
2 ∝ T



Applications: wave scattering 
•  Consider a particle being accelerated by an external wave field 

•  The Larmor formula then tell us the average emitted power 

–  Note: that this is only valid in vacuum (restriction of Larmor formula) 
•  Rewrite in term of the wave energy density W0    

–  in vacuum : 

–  Shown in the next page: This describe the fraction of the power density 
that is scattered by the particle, i.e. first absorbed and then re-emitted 
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Applications: wave scattering 
•  The scattering process can be interpreted as a collision 

–  Consider a density of wave quanta representing the power density W0 

–  The wave quanta, photons, move with velocity c (speed of light) 
–  Imagine a charged particle as a ball with a cross section σT   
–  Then the power scattered per unit time is given by 

•  The effective cross section for  
wave scattering on electrons 
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Applications: Thomson scattering 
•  Scattering of waves against electrons is called Thomson scattering 

–  from this process the classical radius of the electron was defined as 

–  Note: this is an effective radius for Thomson scattering and not a 
measure of the “real” size of the electron  

–  in general quantum mechanics is needed to understand the behavior of 
electrons at such short length scales 

•  Examples of Thomson scattering: 
–  In fusion devices, Thomson scattering of a high-intensity laser beam is 

used for measuring the electron temperatures and densities. 
–  The continous spectrum from the solar corona is the result of the 

Thomson scattering of solar radiation with free electrons  
–  The cosmic microwave background is thought to be linearly polarized 

as a result of Thomson scattering  
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Applications: Bremsstrahlung 
•  Bremsstrahlung (~Braking radiation) come from the acceleration 

associated with electrostatic collisions between  
charged particles (called Coulomb collisions) 

•  Note that the electrostatic force is “long range”, E~1/r2  
–  thus electrostatic collisions between  

charged particles is a smooth continuous processes 

•  Derivation: an electron moving near an ion with charge Ze 
–  since the ion is heavier than the electron, we assume Xion(t)=0 
–  the equation of motion for the electron and the emitted power are 

–  this is the Bremsstrahlung radiation at one time of one single collision 
•  to estimate the total power from a medium we need to integrate over both the entire 

collision and all ongoing collisions! 
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Bremsstrahlung: Coulomb collisions 
•  Lets try and integrate the emission over all times 

–  where we integrate in the distance to the ion r    
–  Now we need rmin and  

•  So, let the ion be stationary at the origin 
•  Let the electron start at (x,y,z)=(∞,b,0)  with velocity v=(-v0,0,0) 
•  The conservation of angular momentum and energy gives 

–  This is the Kepler problem for the motion of the planets! 
–  Next we need the minimum distance between ion and electron rmin 
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Bremsstrahlung: Coulomb collisions 
•  Coulomb collisions are mainly due to “long range” interactions,  

–  i.e. particles are far apart, and only slightly change their trajectories 
(there are exceptions in high density plasmas) 

–  thus               and  
–  we are then ready to evaluate the time integrated emission 

•  This is now the emission from a single collision 
–  The cumulative emission from all particles and with all possible b and v0 

has no simple general solution (and is outside the scope of this course) 
–  An approximate: 

•  Thus it can be used to derive information about both the charge, density and 
temperature of the media 
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Industrial applications of Bremsstrahlung 
•  Typical frequency of Bremsstrahlung is in X-ray regime 
•  X-ray tubes: electrons are accelerated to high velocity 

When impacting on a metal surface they emit bremsstrahlung 

•  X-ray tubes are also used in  
–  CAT scanners 
–  airport luggage scanners 
–  X-ray crystallography 
–  industrial inspection. 
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Applications of Bremsstrahlung 
•  Astrophysics: High temerature stellar objects T ~ 107-108 K radiate 

primarily in via bremsstrahlung 
–  Note: surface of the sun 103 – 106 K 

•  Fusion:  
–  Measurements of Bremsstrahlung provide information on the 

prescence of impurities with high charge, temperature and density 
–  Bremsstrahlung and cyclotron radiation power losses: 

•  Temperature at the centre of fusion plasma: ~108K ; the walls are ~103K 
•  Main issue for fusion is to confine heat in plasma core 
•  However, both Bremsstrahlung and cyclotron radiation escape easily 
•  In reactor, radiation losses will be of importance – limits the reactor design 

–  If plasma gets too hot, then radiation losses cool down the plasma. 
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•  Repetition: the emission formula and the multipole expansion 
•  The emission from a free particle - the Larmor formula  
•  Applications of the Larmor formula 

–  Harmonic oscillator 
–  Cyclotron radiation 
–  Thompson scattering 
–  Bremstrahlung 

•  Relativistic generalisation of Larmor formula 
–  Repetition of basic relativity 
–  Co- and contra-variant tensor notation 
–  Lorentz transformation and relativistic invariants 
–  Relativistic Larmor formula 

•  The Lienard-Wiechert potentials 
–  Inductive and radiative electromagnetic fields 
–  Alternative derivation of the Larmor formula 

•  Abraham-Lorentz force 

Outline 
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Quick recap of special relativity 
•  Next we’ll derive a Larmor formula that is valid at relativistic velocities 

•  But first we’ll recap the some basic theory of special relativity 

•  Special relativity is based on two postulates 
–  Principle of relativity: The laws of physics are the same for all observers in uniform 

motion relative to one another 

–  The speed of light in a vacuum (c = 299 792 458 m/s) is the same for all observers, 
regardless of their relative motion, or of the motion of the source of the light 

•  These postulates have many surprising consequences, e.g. 
–  Relativity of simultaneity: Two events, simultaneous for one observer, may not be 

simultaneous for another observer if the observers are in relative motion. 

–  Time dilation: Moving clocks are measured to tick more slowly than a "stationary" clock: 

–  Length contraction: Objects are measured to be shortened in the direction that they are 
moving with respect to the observer. 

–  Mass–energy equivalence: E = mc2, energy and mass are equivalent and transmutable. 
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Background: Tensor formalism for special relativity 
•  The mathematical description of the “principle of relativity” is done with the so 

called Lorentz transform, which describe transformations between non-accelerated 
coordinate systems 

•  The Lorentz transform can be represented with the Minkowski formulation of 
spacetime [the 4D space spanned by time and real space (t,x,y,z)]. 

•  In Minkowski spacetime every tensor has two representations 
–  a vector F can be represented by co-variant components, Fµ   
–  or by contra-variant components, Fµ    
–  think of them as e.g. “row vector” & “column vector” components,  

the “bra” & “ket” of quantum mechanics, or as “dual” spaces 

•  The Minkowski spacetime is a vector space with the inner product 

–  i.e. here summation over repeated indexes is implicit 
–  in this tensor formalism, index can be repeated only for multiplication  

of pairs of co- and contra-variant tensor components 
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Background: Tensor formalism for special relativity 
•  In the Minkowski formulation of spacetime the co- and contra-

variant component of the position vector for the point (t, x, y, z)    

–  thus 
–  Note: An alternative and equivalent definition is 
–  Strange? …we’ll soon see why Minkowski choose this formulation 

•  Transformations between co-  and contra-variant forms are 
performed with the metric tensor gmn or gmn     
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Invariance of coordinate transformation 
•  Consider a moving object (moving in z-direction) viewed by an observer 

standing at the origin of a coordinate system xµ & xµ     
–  The observer measures the speed of the object  

by measuring the position at two time points: 

–  The length of the 4-vector of the plane from  
the first to the second measurement point is 

–  Note: that                    is the retarded time experienced by the object! 
•  Second coordinate system               , where the “moving” object is in rest 

–  measure the speed in the new coordinate system using the same time as the 
observer, i.e.  

–  equation for time-dilation: 

•  Thus, the length of a vector dxµ is independent of the coordinate system, 
despite time dilation and length contraction! 
–  We say that                is an invariant under Lorentz transformations 
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Lorentz transformations 
•  Principle of relativity reformulated: 

•  The transformation operator is therefore a 2-tensor Lµν   
–  a transformation equation from      to       reads: 
–  e.g. to a coordinate system moving in the x-direction with velocity v=βc : 

•  Invariance of inner product: 
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Representation of physical quantities in special relativity 
•  For formulating physical laws we need 4-vector generalisation of 

common physical quantities; careful considerations yields 
–  position 

–  velocity 

–  momentum 

–  wave vector 

–  current density 

–  4-vector potential 

–  Force 

 where 
•  All these quantities has co-variant representations, e.g. 
•  Any inner product between two of these quantities are invariant 

under Lorentz transformations! 
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Relativistic Larmor formula 
•  In special relativity the velocity and acceleration is defined in the 

frame of an arbitrary observer experiencing a time τ    

–  Since inner products are invariant under Lorentz transformations,  
thus                                                     is an invariant! 

•  Consider a single particle, then pick a system where it is at rest at 
time τ, but being accelerated by a force 
–  In this coordinate system the particle is non-relativistic and the 

(average) emitted power is given by the Larmor formula 

–  since           is an invariant, so is P(τ) , i.e. above we have  
a relativistic Larmor formula!! 
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Relativistic Larmor formula 
•  Rewrite the acceleration in term of the 3-vector velocity v    

•  Acceleration in special relativity is somewhat artificial 
–  instead use the force  
–  Larmor formula in terms of the 3-vector force F    
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Relativistic Larmor formula 
•  Let the object move perpendicular to the force 

–  No relativistic correction! 

•  Let the object move along the force  
–  i.e. F is parallel to v    

–  relativitstic correction by γ2 !   
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•  Repetition: the emission formula and the multipole expansion 
•  The emission from a free particle - the Larmor formula  
•  Applications of the Larmor formula 

–  Harmonic oscillator 
–  Cyclotron radiation 
–  Thompson scattering 
–  Bremstrahlung 

•  Relativistic generalisation of Larmor formula 
–  Repetition of basic relativity 
–  Co- and contra-variant tensor notation 
–  Lorentz transformation and relativistic invariants 
–  Relativistic Larmor formula 

•  The Lienard-Wiechert potentials 
–  Inductive and radiative electromagnetic fields 
–  Alternative derivation of the Larmor formula 

•  Abraham-Lorentz force 

Outline 
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Chapter 19: Alternative treatments of emission processes 
•  The traditional treatment of emission; study the emitted Poynting flux 

–  start with the scalar and vector potentials from single particle 
•  Lorentz gauge: the potentials follows d’Alemberts equation (Ch. 5)  

•  When the sources is from a single particle 

–  integrate over x’    
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The Lienard-Wiechert potentials 
•  Be careful with integration over t’ !  

–  Note that t’ appear non-linearly in the Dirac delta 
•  Remember: 

•  thus 

–  the time tr is known as the retarded time 
•  Note:                                          is a non-linear equation for tr  

•  The potentials can then be written as the Lienard-Wiechert potentials 

13-02-27 32 Dispersive Media, Lecture 8 - Thomas Johnson 

€ 

A t,x( ) /µ0

φ t,x( )ε0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

q
4π x −X(tr ) − x −X(tr)( ) • ˙ X (tr ) /c

˙ X (t')
1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

dxδ g(x)( )∫ =
xr :g(xr )=0
∑ g'(xr)( )−1

€ 

dt'δ t − t '−x −X(t') / c( )∫ =
∂
∂tr

t − tr − x −X(tr ) / c( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

= ... = 1−
x −X(tr )( ) • ˙ X (tr )
c x −X(tr)

2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

€ 

t − tr − x −X(tr) / c = 0,   where 

€ 

t − tr − x −X(tr) / c = 0



The Lienard-Wiechert potentials 
•  The Lienard-Wiechert potentials are simplified when choosing 

coordinate to locate the source to the origin 

•  Note that the term                              is a relativistic term 

•  The Lienard-Wiechert potentials are derived from Maxwells equations, 
thus they are automatically relativistically correct! 
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E and B from the Lienard-Wiechert potentials 
•  Calculate E and B field from the Lienard-Wiechert potentials 

•  Note functional dependence                      thus 

–  After lengthy calculations, using 
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Radiative and Inductive fields 
•  The electric field has term ~1/r and other ~1/r2 ; use x=nr    

•  Note: only the radiative terms depend on the acceleration 
•  Imagine radiation as emitted photons;  

•  Radiate N photons at t=0, |x|=0, then at time T>0 you have N photons on the 
sphere with radius R=cT , i.e. the number of photons is independent of R. 

•  What energy (~number of photons) reach the sphere of radius R? 

•  Radiative                                                        for all R  -  free moving photons 

•  Inductive                                                             virtual photons bound to not leave 
the particle unless absorbed by receiver particle 
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Simplified form for the electric field 
•  Simplify the radiative electric field (for improved interpretation)  

•  Simplify the numerator: 

•  Use the vector identity: 
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The Poynting flux 
•  Poynting flux radiated by a single charge particle, which at the 

retarded time tr had velocity v and acceleration a 

•  The non-relativistic Poynting flux: 
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Radiated power – non-relativistic limit 
•  The Poynting flux is an energy flux 

•  The flux through a closed surface = the power leaving the enclosed region 

•  Encircle the particle with a large sphere with radius R 
•  The power leaving this sphere is 

•  The non-relativistic power leaving the sphere is given by 

 the radiated power at the retarded time tr as given by the Larmor formula! 
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Sketch of emission in dispersive media 
•  The Poynting flux approach to emission can also be used in 

dispersive media, however this procedure may become tedious 
•  Start with the photon propagator for the wave equation 

•  Particle source 

•  The emitted power is now given by the energy flux, which now 
include both an electro-magnetic term and a particle term (Ch. 15) 

•  However, this formalism is often more tedious then treating emission 
in terms of the “work” as outlined earlier in this lecture. 
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•  Repetition: the emission formula and the multipole expansion 
•  The emission from a free particle - the Larmor formula  
•  Applications of the Larmor formula 

–  Harmonic oscillator 
–  Cyclotron radiation 
–  Thompson scattering 
–  Bremstrahlung 

•  Relativistic generalisation of Larmor formula 
–  Repetition of basic relativity 
–  Co- and contra-variant tensor notation 
–  Lorentz transformation and relativistic invariants 
–  Relativistic Larmor formula 

•  The Lienard-Wiechert potentials 
–  Inductive and radiative electromagnetic fields 
–  Alternative derivation of the Larmor formula 

•  Abraham-Lorentz force 

Outline 
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Self-forces 
•  Energy conservation: A particle emitting radiation losses energy 

•  Interpretation: the emitted wave performs work on the particle: 

–   The force from one particle onto itself is called the self-force 
•  Remember your first lecture on electrostatics 

–  two charged particles “1” and “2” exert a force on each other 

•  This says nothing about the force from a single particle on itself, 
i.e. the self-force, that is needed to describe emission   
–  …this problem is only properly resolved in quantum mechanics! 

•  Here we’ll derive the Abraham-Lorentz force   
–  classical treatment of radiation conserving energy and momentum 
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Radiation reaction 
•  This power emitted during radiation, according to the Larmor formula 

•  Construct a radiation-reaction force that describe the lost energy 
–  the work by this force:  

•  Time integration 

•  To remove the first term, consider e.g. periodic motion, or events 
such that the acceleration is finite during event 
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Abraham-Lorentz equation of motion 
•  Let the integrated power be represented by a reaction force 

–  Thus there is a force that recover the time integrated power 

–  This does not imply that it represents the instantaneous force! 
•  The equation of motion under the influence of a self-force F0(t) 

–  this is the Abraham-Lorentz equation of motion    
–  Note: the force has a time scale τ , which is roughly the time it takes for 

light to travel across the classical radius of the electron, rele    
•  But there are serious problems with the Abraham-Lorentz equation! 
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Properties of the Abraham-Lorentz equation of motion 
•  First, there’s a run-away solution possible in absence of any force 

•  Rewrite the Abraham-Lorentz equation to avoid the run-away solution 

–  This equation has no run-away solutions 
•  However it includes pre-acceleration 

–  the force is evaluated in future times t+τx    
–  the particle responds to the force before the force is applied 
–  this is NOT causal model!! 
–  however, the time scale of pre-acceleration is tiny: 
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