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Repetition: Emission formula

« The energy emitted by a wave mode M (using antihermitian part of
the propagator), when integrating over the é-function in w

w, = [dku, (k)

(0 )

— the emission formula

— thus U,, is a density of emission in k-space
« Alternatively, the emission per unit frequency and solid angle (d€2)

— for non-spatially dispersive media

W = fdzgd(x) EV ((D Q)

%k
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Repetition: The current expressed in multipole moments

Multipoles moments are related to Fourier transform of the current:
fdtew)tfd3 [ —ike x] )
= fdte"‘”ffd3xll —ike*x - %(k ° X)2 + ]J(l‘X)
= —iwd(w) + ik x m(w) — wq * k(w)/2 + ...

Emission formula Emission spectrum

(k-space power density) (integrated over solid angles)
g ) = 2o ¢« of Ve (0) = 22 oo
€, 6m’e
o R, (K) . 2 . n(w) o
oz 1) = 228, < e 1V () = 20 o
3 _.6
s ) - K86, g0 f Vi, (0) = D0y
8O

720m’e,c> VY

13-02-27 Electromagnetic Processes In Dispersive Media,

Lecture 7




Repetition: Emission in the time-domain

* The total radiated power from a dipole

1
g |

67 (¢ <‘fl(t)‘2>

67580(:3

— Interpreted as a time average power

— ideally the averaging should beperformed over all times
 for event, or periodic motion, averaging can be done over finite times
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Dipole current from single particle

- Current from a single particle: J(z,x) = gX(#)8(x — X(?))

J(w.k) = qj dte ™ f A’k ™ X ()8(x - X(1))

_ _iwqjdte-"‘”f [1+ik * X(2) + .. ]X()8(x — X(1))

_ _iwq{x(m + J die TR JX(0d(x - xm)}
.

Dipole: d=¢X

» Dipole approximation exp[ikx]~1 ; but what is the error?

— Assume oscillating motion:  X(¢) = vcos(wt) = X ~ v/m
« for non-oscillating motion: emission of quanta w occures on time-scale ~1/w

V n, mw Vv % : .
ke X(7)~ k— ~ M ~n, — Dipole valid for
€}

cC W C non-relativistic motion
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Relation between emission and acceleration

- Emission from single particle; dipole current: J(w,k) = —icogX(w)

k

2 2 2
qn,, e, *w X((D)‘
80(2TEC)3 1 —le

Vu (oo,lA() =

k

« Note that —w*X(w) =a(w) is the acceleration:

. 2
R 2 e, *al(w)
VM(oo,k) __9 "y e L
e,(2mc)” 1 - e, *°k

— Thus emission from free particle is a response to acceleration!

« Power radiated for isotropic transverse waves:

/ truncated outside [-T,T] \
1

—11m—fd§22V ( ) u (@) - lim ——a’ (w)

] J'ISSC ST QT

\9)

P

rad
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The Larmor fomula

« The emission integrated over all frequencies is related to time
integral of the emitted power
— in vacuume (n,,=1)
P hmij\a ()| do> = hmz—Tc f a” (1) dr = 11m2— f ()| dt
T

T — oo
—00

The Larmor formula

2
P=

6::(]90& <|a(t)|2>

— the Larmor formula related the averaged radiated power with
the average acceleration

« The time average has the same interpretation as for dipole and is
sometimes written

2

q 2
P(t) = A
2 6313806'3 |a( )|

— but should always be interpreted as an average!
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Applications: Harmonic oscillator

» As a first example, consider the emission from a particle performing
an harmonic oscillation

— harmonic oscillations in one dimesion X

X(1) = x,cos(w,t) , a(t) = X(t) = —x,w,” cos(w,t)
— Larmor formula: the emitted power associated with this acceleration

> 4 2
q W, X,
3

P(t) = cosz(ooot)

6rte

— oscillation cos?(w,f) above is not physical; average over a period

» 4 2
q W, X,

P - 3
12me ¢
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Applications: Harmonic oscillator — frequency spectum

« Express the particle as a dipole d, use truncation for Fourier
transform

d(0) = ¢ F{X(0)} = 1g%,[8(02 - 0,) + 8(02 + )] =

. ((m —mO)T) . (((1)+u)0)T)
sinc +sinc
2 2

lim 1

= OOETC]XO

T—

« The time-averaged power emitted from a dipole

im 1 d@)"
T==T 6m’e,c’

P(0) = Tlf‘w% [ V(o.9)da =

im 1 | | . ((w-wy)T . [(W+w0)T 2
= ————— |- wTgXx,|sinc + SINC =
=>To6rn e, |2 2 2
2 4 2
qw, X
={see Ch.4.5}...= 127[; CO3 [5((0—(00)"'6((”“”0)]
0
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Applications: cyclotron emission

An important emission process from magnetised particles is from
the acceleration involved in cyclotron motion

— consider a charged particle moving in a static magnetic field B=B_e,

a(t)=V(t)=iva=—Qerv, =ﬁ

m m
vl [0 @ olv,] @] [usin@)] [x®] [p,cos(Qr)
v =[-Q 0 0f|v,[=[v,(®)|=]vcos(Qn) = |y(1)|=|p, sin(Q)
_‘}z_ I 0 0 O V. _Vx(t)_ I Vi | _Z(t)_ i vt

— where we have the Larmor radius P; =,/

— This describe circular motion around magnetic field lines of force called
the Larmor- or cyclotron-motion 4152, 2
q Bv,

— The period averaged radiation: |P =
" ° 12me c’m’

— Magnetized plasma; power depends on the temperature: P « sz T

« Electron cyclotron emission is one of the most common
ways to measure the temperature of a fusion plasma!
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Applications: wave scattering

« Consider a particle being accelerated by an external wave field

E(t,x) =E,cos(w,f -k, *x) = a(t) =qE(t,x)/m

« The Larmor formula then tell us the average emitted power

F:

q ‘Eor

12;e m*c’

— Note: that this is only valid in vacuum (restriction of Larmor formula)
* Rewrite in term of the wave energy density W,
— invacuum: W, = gO‘EO‘Z /4 + eo‘k x E, /cw‘2/4 = SO‘EO‘Z/Z

}_)=

87T

3

|

) 2
! 2 ) cW,
4ge ,mc

— Shown in the next page: This describe the fraction of the power density
that is scattered by the particle, i.e. first absorbed and then re-emitted
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Applications: wave scattering

The scattering process can be interpreted as a collision
— Consider a density of wave quanta representing the power density W,
— The wave quanta, photons, move with velocity ¢ (speed of light)
— Imagine a charged particle as a ball with a cross section o
— Then the power scattered per unit time is given by

P =0.cW,

ho Cross section area o
i i —_— T
The effective cross section for ) m—re of the particle

. e
wave scattering on electrons :

—_—
: — o
8T q e
or =?r0 o = 4 ;mc’ —>
0 Density of Photons hitting
incoming this area are

photons scattered
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Applications: Thomson scattering

« Scattering of waves against electrons is called Thomson scattering

— from this process the classical radius of the electron was defined as

2
€

- ~2.8179 x 107" [m]

r
ele 2
4me,m,c

— Note: this is an effective radius for Thomson scattering and not a
measure of the “real” size of the electron

— in general quantum mechanics is needed to understand the behavior of
electrons at such short length scales

« Examples of Thomson scattering:

— In fusion devices, Thomson scattering of a high-intensity laser beam is
used for measuring the electron temperatures and densities.

— The continous spectrum from the solar corona is the result of the
Thomson scattering of solar radiation with free electrons

— The cosmic microwave background is thought to be linearly polarized
as a result of Thomson scattering
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Applications: Bremsstrahlung

Bremsstrahlung (~Braking radiation) come from the acceleration
associated with electrostatic collisions between
charged particles (called Coulomb collisions)

Note that the electrostatic force is “long range”, E~1/r?
— thus electrostatic collisions between .

Electron

charged particles is a smooth continuous processes =

O
W

X-ray

Derivation: an electron moving near an ion with charge Ze
— since the ion is heavier than the electron, we assume X, (¢)=0
— the equation of motion for the electron and the emitted power are

Ze*X(t) ~ P() 27" ez) 1
dve o X(1)] dmey ) |X()

— this is the Bremsstrahlung radiation at one time of one single collision

» to estimate the total power from a medium we need to integrate over both the entire
collision and all ongoing collisions!

m X(t) = -

~ A 23
3m;c
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Bremsstrahlung: Coulomb collisions *

r

Lets try and integrate the emission over all times

” 277 [ e\ ¢ dr
W =fP(t)dt =2 f : Projectile -
ad J 3mezc3 43'580 | r4l’(t) B J_"""::f_""S_c.atterlngangle
— where we integrate in the distance to the ion r Impact parameter b
— Nowwe needr,,,and r(¢) _y . Target

So, let the ion be stationary at the origin
Let the electron start at (x,y,z)=(c0,b,0) with velocity v=(-v,,0,0)
The conservation of angular momentum and energy gives

m.r’0 = m by, > )
| \/ 2b, b Ze
- = r=v,q/l+

L2 240 Ze’ 1 2 VR b0= 2
mlr-+r067)- =—my ror dqe,m,v,
‘ Aper 2 ¢
0

— This is the Kepler problem for the motion of the planets!
— Next we need the minimum distance between ion and electron r,,,,

2b, b’

0 2 2 _ 2 12

- =0 = 1+ -——=0=7r_"+2br. -b" =0 = r_ =b,++/b, +b
rmin rmin

13-02-27 Dispersive Media, Lecture 8 - Thomas Johnson 16



Bremsstrahlung: Coulomb collisions

« Coulomb collisions are mainly due to “long range” interactions,

— i.e. particles are far apart, and only slightly change their trajectories
(there are exceptions in high density plasmas)

— thus r. =b and b, <<b
— we are then ready to evaluate the time integrated emission
27°

2.3
3m;c

W . =2

rad

3
¢’ )
4me,

2
r r

* This is now the emission from a single collision

— The cumulative emission from all particles and with all possible 5 and v,
has no simple general solution (and is outside the scope of this course)

— An approximate:

e 3}« dr nZ’
dme,) Y \/ o, b 3micvdb’
rveql+

2
Py, < Zinn A1,

« Thus it can be used to derive information about both the charge, density and
temperature of the media
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Industrial applications of Bremsstrahlung

Typical frequency of Bremsstrahlung is in X-ray regime

X-ray tubes: electrons are accelerated to high velocity
When impacting on a metal surface they emit bremsstrahlung

X-ray tubes are also used in
— CAT scanners

— airport luggage scanners

— X-ray crystallography

— industrial inspection.
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Applications of Bremsstrahlung

« Astrophysics: High temerature stellar objects T ~ 107-108 K radiate
primarily in via bremsstrahlung

— Note: surface of the sun 103 — 106 K

* Fusion:

— Measurements of Bremsstrahlung provide information on the
prescence of impurities with high charge, temperature and density
— Bremsstrahlung and cyclotron radiation power losses:
« Temperature at the centre of fusion plasma: ~108K ; the walls are ~103K
» Main issue for fusion is to confine heat in plasma core
* However, both Bremsstrahlung and cyclotron radiation escape easily
* |In reactor, radiation losses will be of importance — limits the reactor design
— If plasma gets too hot, then radiation losses cool down the plasma.
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Quick recap of special relativity

Next we’ll derive a Larmor formula that is valid at relativistic velocities

But first we'll recap the some basic theory of special relativity

Special relativity is based on two postulates

Principle of relativity: The laws of physics are the same for all observers in uniform
motion relative to one another

The speed of light in a vacuum (¢ = 299 792 458 m/s) is the same for all observers,
regardless of their relative motion, or of the motion of the source of the light

These postulates have many surprising consequences, €.qg.

Relativity of simultaneity: Two events, simultaneous for one observer, may not be
simultaneous for another observer if the observers are in relative motion.

Time dilation: Moving clocks are measured to tick more slowly than a "stationary" clock:
dT,  =dT,. Al1-v?/c’

moving stationary
Length contraction: Objects are measured to be shortened in the direction that they are
moving with respect to the observer.

Mass—energy equivalence: E = mc?, energy and mass are equivalent and transmutable.
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Background: Tensor formalism for special relativity

The mathematical description of the “principle of relativity” is done with the so
called Lorentz transform, which describe transformations between non-accelerated
coordinate systems

The Lorentz transform can be represented with the Minkowski formulation of
spacetime [the 4D space spanned by time and real space (z,x,y,z)].

In Minkowski spacetime every tensor has two representations
— a vector F can be represented by co-variant components, F,
— or by contra-variant components, F*

— think of them as e.g. “row vector” & “column vector’” components,
the “bra” & “ket” of quantum mechanics, or as “dual” spaces

The Minkowski spacetime is a vector space with the inner product
(F.G)=F"G, =F,G" =FG'+F,G* + F,G’ + F,G"

— i.e. here summation over repeated indexes is implicit

— in this tensor formalism, index can be repeated only for multiplication
of pairs of co- and contra-variant tensor components
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Background: Tensor formalism for special relativity

In the Minkowski formulation of spacetime the co- and contra-
variant component of the position vector for the point (z, x, y, z)

x, =|ct,—x,—y,~z]

u

x5 = [ct,x,y,z]T

— thus ||x||2 = x,x" =c’t’ - |r|2
— Note: An alternative and equivalent definition is X, = [—ct,x,y,z]
— Strange? ...we’'ll soon see why Minkowski choose this formulation

Transformations between co- and contra-variant forms are
performed with the metric tensor g™ or g, .

0O 0 O0][x*

1 X 1T 0 0 0

Clo -1 0 oflx o 0 -1 0 0
W=8 Y =1y 0 21 ol TT T %o 0 21 o
0o 0 0 -1f|x 0 0 0 -1
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Invariance of coordinate transformation

« Consider a moving object (moving in z-direction) viewed by an observer
standing at the origin of a coordinate system x* & x,

— The observer measures the speed of the object
by measuring the position at two time points:
v =[z2(T) - z2(0)]/T © S =

N
— The length of the 4-vector of the plane from Hu 55\/
. . . u

the first to the second measurement point is
||dx||2 =dx"dx, = c’dt’ —dz’ =c’T? —v’T? = csz(l —v? /cz)

— Note: that T+/1 — v /c is the retarded time experienced by the object!

« Second coordinate system 5c & x", where the “moving” object is in rest

— measure the speed in the new coordinate system using the same time as the
observer, i.e. ||dx|| =dx"dx, = c’dt* -0

— equation for time-dilation: df = T\/l —vi/c? = ||0b~c||2 = c2T2(1 —vz/cz)

« Thus, the length of a vector dx* is independent of the coordinate system,
despite time dilation and length contraction!

— We say that dx”dxM is an invariant under Lorentz transformations
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Lorentz transformations

 Principle of relativity reformulated:

The laws of physics are invariants
under Lorentz transformations

* The transformation operator is therefore a 2-tensor L#,
— a transformation equation from x* to x* reads: x* =L’ . x"
— e.g. to a coordinate system moving in the x-direction with velocity v=p0c :

L

u

( Y —y[S 0 O0) i t'= Y(t — |3X> Repeat calculation
' from previous slide:
Ri v 00 |:>.. . =Y(X—Bl‘) dx'=0 = dx = dt
O O 1 O '= ' —
y =Yy = dt'=y(dr - BPdt)
\ O 0O 0 I 7=z ..=dtly

- Invariance of inner product: a"b, = a"b,

aulbw = gu'v'awbv' = 8wv (kaa}\ )(LV‘“bn) -

a'b, = gnxaxb”

L has to satisfy:
B gM'V'LM'T]LV'K = gn?x.

13-02-27
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Representation of physical quantities in special relativity

For formulating physical laws we need 4-vector generalisation of
common physical quantities; careful considerations yields

— position x* =[erx]

— velocity u" =|yc,y V]
— momentum p* = :e/c,p] . el =m’c’ +|p|2c2
— wave vector k" =[w/ck]

— current density J" = :pc,J]
— 4-vector potential A" =[¢/c,A]
— Force " =[yv- F/c,yF]
where vy = (1 v’ /cz)_l/2
All these quantities has co-variant representations, e.g. A, = g, A"

Any inner product between two of these quantities are invariant
under Lorentz transformations!
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Relativistic Larmor formula

 In special relativity the velocity and acceleration is defined in the
frame of an arbitrary observer experiencing a time t

'y = 2O v =[e.x..2]
1% = ]
ot — v, (D) =|c,~%,-y,~Z]
az.xu("l:) u _ B e e T
M("c) — a (1:) _Oaxay’Z]
o a,(v) =[0.-%,~.-z]
— Since inner products are mvanant under Lorentz transformations,
thus a"(t)a,(v) =-%° - j° -z" = Ja|" is an invariant!

« Consider a single particle, then pick a system where it is at rest at
time T, but being accelerated by a force

— In this coordinate system the particle is non-relativistic and the
(average) emitted power is given by the Larmor formula

a’(v)a,(7)

q
P(T) = —
@) 6rte ¢

— since a“au IS an invariant, so is P(t) , i.e. above we have
a relativistic Larmor formula!!
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Relativistic Larmor formula

* Rewrite the acceleration in term of the 3-vector velocity v

2 2

a" =y tvev | V+Y—2V(V‘V)

C C

2| [+,]? |VX V|2
a“‘au = —y |V| — >
C

q° o1 [V V|2
= P = 6 3 Y V" - 2

TUE ,C C

» Acceleration in special relativity is somewhat artificial
— instead use the force
— Larmor formula in terms of the 3-vector force F

g v ) |V X F| Note: there’s a typo in the
P = T |F| S — book; the cross product is
E,C m ¢ C replaced by scalar product
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Relativistic Larmor formula

« Let the object move perpendicular to the force

v x F|=|v[F| s >—)—
’ FZ(I _ |V|2) ’

P=Y2 q q

_ F> F
—m
6me com’ l .

2 | 3.2
67te,c'm

C

— No relativistic correction!

» Let the object move along the force
— i.e. Fis parallel to v

vxF =0 ,;(
2

q 2
P=y F _
! 6me com’ lF e

— relativitstic correction by y? !
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Chapter 19: Alternative treatments of emission processes

« The traditional treatment of emission; study the emitted Poynting flux
— start with the scalar and vector potentials from single particle

« Lorentz gauge: the potentials follows d’Alemberts equation (Ch. 5)
A(t,x)/u, 8t —1'-Jx —x'/c) [J (7' X")
o(1,x)e, 47jx - x| p(#',x")

* When the sources is from a single particle

- [ drd’x

Altx /Mo - [an's 3t - ' -|x = x'/ ) [gX(1)d(x'-X(1"))
o(1,x)e, 47tjx — x| gd(x'-X(1"))
— integrate over x’
A(t,x)/u, _fdt'é(t-t'—|x—X(tv)|/c) gX(1")
o(1,x)e, 4qt)x - X(1")| g
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The Lienard-Wiechert potentials *

» Be careful with integration over ¢’ !
— Note that ¢” appear non-linearly in the Dirac delta

« Remember: deB(g(x))= E (g'(xr))_l

x,:8(x,)=0
-1

« thus fdt'é(t —t'|x - X(t')|/c) = [;(t —t - ‘X - X(fr)/C)

r

-1

(x - X(z,)) * X(t,)

— . /c=0
clx - X(t,)

, Where t -t - ‘X - X(1,)

— the time ¢, is known as the retarded time
- Note: t -1 - ‘X — X(¢, )/l ¢ =0 is a non-linear equation for ¢,
* The potentials can then be written as the Lienard-Wiechert potentials

A(t,x)/uo
d(1.x)e,

X(#)
1

q
~(x - X(1) * X(t,)/c]

- dafx - X(r,)
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The Lienard-Wiechert potentials

The Lienard-Wiechert potentials are simplified when choosing
coordinate to locate the source to the origin X(¢,) =0

A(t,X) /W
¢(t’x)80

X(t,)
1

_ q
4n(|x| -X* X(tr)/c)

 Note that the term x ® X(tr)/c ~Vv/c is a relativistic term

* The Lienard-Wiechert potentials are derived from Maxwells equations,
thus they are automatically relativistically correct!
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E and B from the Lienard-Wiechert potentials *

« (Calculate E and B field from the Lienard-Wiechert potentials

A
E=_V¢+aa_t , B=VxA

Note functional dependence f, =? (¢,X) thus

aP(? ,X) 0
—Vt +e. —O(1.,X
ot ' faqu)(r )

JdA (1, J
RIS F——A(1,X)

dt, 0x ;

Vo(r,(1.X).x) =

Ve A(z.(1,X),X) =

0 dA.(t ,X) 0t
—A(t.(1,X),X) =—— -
Y (1,(2,X),X) PO

r

— After lengthy calculations, using {r =Ix| , n=x/Ix| , a=a(t,) , v= V(l‘r)}

_an

B o 4 (x—rv/c)(l—vz/cz+x°a/cz)—(ar/cz)(r_x.V/C)

C =4J‘E80 (r—X'V/C)3
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Radiative and Inductive fields

 The electric field has term ~1/ and other ~1/#? ; use x=nr

g [(n - V/c)(l -v’/c*+me a/cz) - r(a/cz)((l -n* v/c))]

E- =
47ie, r*(l-nev/c)
) q <r(n—v/c)n'a—(1—n°V/c)a+(11-V/C)(1—V2/6‘2)\>
4me,(1-nevic) | c'r o r’ |
Radiative Inductive

* Note: only the radiative terms depend on the acceleration

* |Imagine radiation as emitted photons;

« Radiate N photons at =0, |x|=0, then at time 7>0 you have N photons on the
sphere with radius R=cT , i.e. the number of photons is independent of R.

« What energy (~number of photons) reach the sphere of radius R?
 Radiative W ~ ¢|E|2R2d£2 ~ |1/R|2 >~1 forallR - free moving photons

* Inductive W ~ gS|E| R*dQ ~ ‘I/R ‘ R’ ~R™ virtual photons bound to not leave
the particle unless absorbed by receiver particle
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Simplified form for the electric field *

« Simplify the radiative electric field (for improved interpretation)

. g )3{(n—v/c)n°a—(1—n°V/c)a}

rad 2
4me,(l-nev/c cr

- Simplify the numerator: e, *{(n-v/c)nsa-(l1-n*v/c)a}=

{nknj -nw,;/c— (1 -n,v, /c)éjk}ak =

[nknj —6jk]ak —[nkvj - nmvméjk]ak /c

« Use the vector identity:
[a x (b x c)] =€, &umd bC,, = (6i16jm -0, 0 )ajblcm

j im™ jl

— [nknj _ 6jk]ak = [n X (n X a)]j & [nkvj — nmvmﬁjk]ak = [n X (V X a)]j

(ajbl. —ajbj)cj

g nx[m-v/c)xal q nx{nx[(n—v/c)xa]}
N 2 3 B, = 3 3
dmec” (1-mev/e)r 47 (I-nev/c)'r

rad

rad
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The Poynting flux

« Poynting flux radiated by a single charge particle, which at the
retarded time ¢, had velocity v and acceleration a

_ExB q° ‘nx[(n—v/c)xa]‘2

F =
BT 16m°e,c”  (1-m V/c)6r2

* The non-relativistic Poynting flux:

q’ ‘n X [n X a]‘2

EM —
l67°e,c” r’

n+0(v/c)
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Radiated power — non-relativistic limit

« The Poynting flux is an energy flux
« The flux through a closed surface = the power leaving the enclosed region

* Encircle the particle with a large sphere with radius R
 The power leaving this sphere is

2
P = ﬁds *F,,, = 16J'Cq2806‘2 #dQ‘n x [n x a]‘2 +0(v/c)

0 -1

* The non-relativistic power leaving the sphere is given by

g'a(t,)’
6me

P(t,R) = +0(v/c)

the radiated power at the retarded time ¢. as given by the Larmor formula!
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Sketch of emission in dispersive media *

The Poynting flux approach to emission can also be used in
dispersive media, however this procedure may become tedious

Start with the photon propagator for the wave equation

2 hy -
A1) = [ dod’ k570 (ke ™

Particle source J,(wk) = go’X (k) =g’ [ dre™ XX (1)
Ao .
A(tx)=qu.c’ | d'X.(t) | dod’k—Le Tk x-X1)

The emitted power is now given by the energy flux, which now
iInclude both an electro-magnetic term and a particle term (Ch. 15)

Po =4F dQ(F2 +7) = ff a@u®
r=R o ",

However, this formalism is often more tedious then treating emission
in terms of the “work” as outlined earlier in this lecture.

{29%[A2k ~AA" k|- 4] % 4 }
ok
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Outline

Repetition: the emission formula and the multipole expansion
The emission from a free particle - the Larmor formula

Applications of the Larmor formula
— Harmonic oscillator
— Cyclotron radiation
— Thompson scattering
— Bremstrahlung
Relativistic generalisation of Larmor formula
— Repetition of basic relativity
— Co- and contra-variant tensor notation
— Lorentz transformation and relativistic invariants
— Relativistic Larmor formula
The Lienard-Wiechert potentials
— Inductive and radiative electromagnetic fields
— Alternative derivation of the Larmor formula

Abraham-Lorentz force
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Self-forces

Energy conservation: A particle emitting radiation losses energy

E 5 = E1 = hm (from previous lecture — from quantum mechanics)

Interpretation: the emitted wave performs work on the particle:
W=Fev=gEev=E"*]

— The force from one particle onto itself is called the self-force

Remember your first lecture on electrostatics

— two charged particles “1” and “2” exert a force on each other

Fl _ —F2 _ QIQZ (r2 B rl)

43‘580‘1'2 — 1’1‘3
This says nothing about the force from a single particle on itself,
l.e. the self-force, that is needed to describe emission

— ...this problem is only properly resolved in quantum mechanics!

Here we’ll derive the Abraham-Lorentz force
— classical treatment of radiation conserving energy and momentum
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Radiation reaction

This power emitted during radiation, according to the Larmor formula

g’

67tE ¢

P(t) =

Construct a radiation-reaction force that describe the lost energy
— the work by this force: P(t) =-v(t)* F . (1)

Time integration
%) 2 5 2

[Py =—— [vaydi=-— {[V(t)’V(t) f dtv(t)'v(t)}

e Y e ¢

To remove the first term, consider e.g. periodic motion, or events
such that the acceleration is finite during event

Iy 2
q

P(t)dt = -

{() -

0

3 j drv(t) ® v(?)
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Abraham-Lorentz equation of motion

« Let the integrated power be represented by a reaction force

2 ) t)

q .
P(t)dt = - drv(t) e v(t) = = | drv(t) °F
[P mo(ﬁ{ V(1) * V(1) {v()

— Thus there is a force that recover the time integrated power
2

q .
F_ = v(t
react 6TESOC3 ( )

— This does not imply that it represents the instantaneous force!
» The equation of motion under the influence of a self-force F ()
2 2
27 r
422 e 107 w77 ]
67e ¢ 3 ¢
— this is the Abraham-Lorentz equation of motion
— Note: the force has a time scale 7, which is roughly the time it takes for
light to travel across the classical radius of the electron, r,,

« But there are serious problems with the Abraham-Lorentz equation!

m|v(t) —-tv(t)| =F, , ©
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Properties of the Abraham-Lorentz equation of motion

* First, there’s a run-away solution possible in absence of any force

0
m[¥(t) = ()] =0 = V(t)N{em

 Rewrite the Abraham-Lorentz equation to avoid the run-away solution

mv(t) = f F,(t+7tx)e "dx
0

<— run-away!

— This equation has no run-away solutions

« However it includes pre-acceleration
— the force is evaluated in future times t+1x
— the particle responds to the force before the force is applied
— this is NOT causal model!! 272
— however, the time scale of pre-acceleration is tiny: T = cle

C
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