Emission from free particles
(Chapters 18-19)

T. Johnson

Outline

- Repetition: the emission formula and the multipole expansion
- The emission from a free particle - the Larmor formula
- Applications of the Larmor formula
- Harmonic oscillator
- Cyclotron radiation
- Thompson scattering
- Bremstrahlung
- Relativistic generalisation of Larmor formula
- Repetition of basic relativity
- Co- and contra-variant tensor notation
- Lorentz transformation and relativistic invariants
- Relativistic Larmor formula
- The Lienard-Wiechert potentials
- Inductive and radiative electromagnetic fields
- Alternative derivation of the Larmor formula
- Abraham-Lorentz force

Repetition: Emission formula

- The energy emitted by a wave mode M (using antihermitian part of the propagator), when integrating over the δ-function in ω

$$
\begin{aligned}
& W_{M}=\sum_{M} \int d^{3} \mathbf{k} U_{M}(\mathbf{k}) \\
& U_{M}(\mathbf{k})=\frac{R_{M}(\mathbf{k})}{\varepsilon_{0}}\left|\mathbf{e}_{M}^{*}(\mathbf{k}) \bullet \mathbf{J}_{e x t}\left(\omega_{M}(\mathbf{k}), \mathbf{k}\right)\right|^{2}
\end{aligned}
$$

- the emission formula
- thus U_{M} is a density of emission in \mathbf{k}-space
- Alternatively, the emission per unit frequency and solid angle ($d \Omega$)
- for non-spatially dispersive media

$$
\begin{aligned}
& W=\int \frac{d^{2} \Omega d \omega}{(2 \pi)^{3}} \sum_{M} V_{M}(\omega, \Omega) \\
& V_{M}(\omega, \Omega)=-\frac{\omega n_{M}}{(2 \pi c)^{3} \varepsilon_{0}} \frac{\left|\mathbf{e}_{M}^{*} \cdot \mathbf{J}_{\mathrm{ext}}\right|^{2}}{1-\left|\mathbf{e}_{M}^{*} \cdot \hat{\mathbf{k}}\right|^{2}}
\end{aligned}
$$

Repetition: The current expressed in multipole moments

- Multipoles moments are related to Fourier transform of the current:

$$
\begin{aligned}
& \mathbf{J}(\omega, \mathbf{k})=\int d t e^{i \omega t} \int d^{3} \mathbf{x}\left[e^{-i \mathbf{k} \cdot \mathbf{x}}\right] \mathbf{J}(t, \mathbf{x}) \\
& =\int d t e^{i \omega t} \int d^{3} \mathbf{x}\left[1-i \mathbf{k} \cdot \mathbf{x}-\frac{1}{2}(\mathbf{k} \cdot \mathbf{x})^{2}+\ldots\right] \mathbf{J}(t, \mathbf{x}) \\
& =-i \omega \mathbf{d}(\omega)+i \mathbf{k} \times \mathbf{m}(\omega)-\omega \mathbf{q} \cdot \mathbf{k}(\omega) / 2+\ldots
\end{aligned}
$$

Emission formula

(k-space power density)

$$
\left\{\begin{array}{l}
U_{M}^{\mathrm{d}}(\mathbf{k})=\frac{R_{M}(\mathbf{k})}{\varepsilon_{0}}\left|\omega_{M} \mathbf{e}_{M}^{*} \bullet \mathbf{d}\right|^{2} \\
U_{M}^{\mathrm{m}}(\mathbf{k})=\frac{R_{M}(\mathbf{k})}{\varepsilon_{0}}\left|\mathbf{e}_{M}^{*} \bullet(\mathbf{k} \times \mathbf{m})\right|^{2} \\
U_{M}^{\mathrm{q}}(\mathbf{k})=\frac{R_{M}(\mathbf{k})}{4 \varepsilon_{0}}\left|\omega_{M} \mathbf{e}_{M, i}^{*} q_{i j} k_{j}\right|^{2}
\end{array}\right.
$$

Emission spectrum (integrated over solid angles)

$$
\left\{\begin{array}{l}
V_{r a d}^{\mathbf{d}}(\omega)=\frac{n(\omega) \omega^{4}}{6 \pi^{2} \varepsilon_{0} c^{3}}|\mathbf{d}(\omega)|^{2} \\
V_{r a d}^{\mathbf{m}}(\omega)=\frac{n(\omega)^{3} \omega^{4}}{6 \pi^{2} \varepsilon_{0} c^{5}}|\mathbf{m}(\omega)|^{2} \\
V_{r a d}^{\mathbf{q}}(\omega)=\frac{n(\omega)^{3} \omega^{6}}{720 \pi^{2} \varepsilon_{0} c^{5}} d_{i j} d_{i j}^{*}
\end{array}\right.
$$

Repetition: Emission in the time-domain

- The total radiated power from a dipole

$$
P_{\text {ave }}=\frac{1}{6 \pi \varepsilon_{0} c^{3}}\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d t|\overrightarrow{\mathbf{d}}(t)|^{2}\right)=\frac{1}{6 \pi \varepsilon_{0} c^{3}}\left\langle\left.\ddot{\mathbf{d}}(t)\right|^{2}\right\rangle
$$

- interpreted as a time average power
- ideally the averaging should beperformed over all times
- for event, or periodic motion, averaging can be done over finite times

Dipole current from single particle

- Current from a single particle: $\mathbf{J}(t, \mathbf{x})=q \dot{\mathbf{X}}(t) \delta(x-\mathbf{X}(t))$

$$
\begin{aligned}
& \mathbf{J}(\omega, \mathbf{k})=q \int_{-\infty}^{\infty} d t e^{-i \omega t} \int d^{3} \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}} \dot{\mathbf{X}}(t) \delta(\mathbf{x}-\mathbf{X}(t)) \\
& =-i \omega q \int_{-\infty}^{\infty} d t e^{-i \omega t}[1+i \mathbf{k} \cdot \mathbf{X}(t)+\ldots] \mathbf{X}(t) \delta(\mathbf{x}-\mathbf{X}(t)) \\
& =-i \omega q\left\{\begin{array}{l}
\left.\left.\mathbf{X}(\omega)+\int_{-\infty}^{\infty} d t e^{-i \omega t} t i \mathbf{k} \cdot \mathbf{X}(t)+\ldots\right] \mathbf{X}(t) \delta(\mathbf{x}-\mathbf{X}(t))\right\} \\
\prod_{\text {Dipole: } \mathbf{d}=q \mathbf{X}}
\end{array} .\right.
\end{aligned}
$$

- Dipole approximation $\exp [i k x] \sim 1$; but what is the error?
- Assume oscillating motion: $\dot{\mathbf{X}}(t)=\mathbf{v} \cos (\omega t) \Rightarrow \mathbf{X} \sim \mathbf{v} / \omega$
- for non-oscillating motion: emission of quanta ω occures on time-scale $t \sim 1 / \omega$

$$
\mathbf{k} \cdot \mathbf{X}(t) \sim k \frac{v}{\omega} \sim \frac{n_{M} \omega}{c} \frac{v}{\omega} \sim n_{M} \frac{v}{c}
$$

Dipole valid for non-relativistic motion

Relation between emission and acceleration

- Emission from single particle; dipole current: $\mathbf{J}(\omega, \mathbf{k}) \approx-i \omega q \mathbf{X}(\omega)$

$$
V_{M}(\omega, \hat{\mathbf{k}})=\frac{q^{2} n_{M}}{\varepsilon_{0}(2 \pi c)^{3}} \frac{\left|\mathbf{e}_{M}^{*} \bullet \omega^{2} \mathbf{X}(\omega)\right|^{2}}{1-\left|\mathbf{e}_{M}^{*} \bullet \hat{\mathbf{k}}\right|^{2}}
$$

- Note that $-\omega^{2} \mathbf{X}(\omega)=\mathbf{a}(\omega)$ is the acceleration:

$$
V_{M}(\omega, \hat{\mathbf{k}})=\frac{q^{2} n_{M}}{\varepsilon_{0}(2 \pi c)^{3}} \frac{\left|\mathbf{e}_{M}^{*} \cdot \mathbf{a}(\omega)\right|^{2}}{1-\left|\mathbf{e}_{M}^{*} \bullet \hat{\mathbf{k}}\right|^{2}}
$$

- Thus emission from free particle is a response to acceleration!
- Power radiated for isotropic transverse waves:

$$
P_{r a d}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int d \Omega \sum_{M} V_{M}^{T}(\omega, \hat{\mathbf{k}})=\frac{q^{2} n_{M}(\omega)}{12 \pi^{2} \varepsilon_{0} c^{3}} \lim _{T \rightarrow \infty} \frac{1}{2 T}\left|\mathbf{a}^{T}(\omega)\right|^{2}
$$

The Larmor fomula

- The emission integrated over all frequencies is related to time integral of the emitted power
- in vacuume ($n_{M}=1$)

$$
P \propto \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-\infty}^{\infty}\left|\mathbf{a}^{T}(\omega)\right|^{2} d \omega=\lim _{T \rightarrow \infty} \frac{2 \pi}{4 T} \int_{-\infty}^{\infty}\left|\mathbf{a}^{T}(t)\right|^{2} d t=\lim _{T \rightarrow \infty} \frac{2 \pi}{T} \int_{-T}^{T}|\mathbf{a}(t)|^{2} d t
$$

The Larmor formula

$$
\left.P=\left.\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}}\langle | \mathbf{a}(t)\right|^{2}\right\rangle
$$

- the Larmor formula related the averaged radiated power with the average acceleration
- The time average has the same interpretation as for dipole and is sometimes written

$$
P(t)=\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}}|\mathbf{a}(t)|^{2}
$$

- but should always be interpreted as an average!

Applications: Harmonic oscillator

- As a first example, consider the emission from a particle performing an harmonic oscillation
- harmonic oscillations in one dimesion X

$$
X(t)=x_{0} \cos \left(\omega_{0} t\right), a(t)=\ddot{X}(t)=-x_{0} \omega_{0}^{2} \cos \left(\omega_{0} t\right)
$$

- Larmor formula: the emitted power associated with this acceleration

$$
P(t)=\frac{q^{2} \omega_{0}{ }^{4} x_{0}^{2}}{6 \pi \varepsilon_{0} c^{3}} \cos ^{2}\left(\omega_{0} t\right)
$$

- oscillation $\cos ^{2}\left(\omega_{0} t\right)$ above is not physical; average over a period

$$
\bar{P}=\frac{q^{2} \omega_{0}{ }^{4} x_{0}{ }^{2}}{12 \pi \varepsilon_{0} c^{3}}
$$

Applications: Harmonic oscillator - frequency spectum

- Express the particle as a dipole d, use truncation for Fourier transform

$$
\begin{aligned}
& \mathbf{d}(\omega)=q \mathcal{F}\{\mathbf{X}(t)\}=\pi q \mathbf{x}_{0}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]= \\
& ={ }_{T \rightarrow \infty} \lim _{2} \frac{1}{2} T q \mathbf{x}_{0}\left[\operatorname{sinc}\left(\frac{\left(\omega-\omega_{0}\right) T}{2}\right)+\operatorname{sinc}\left(\frac{\left(\omega+\omega_{0}\right) T}{2}\right)\right]
\end{aligned}
$$

- The time-averaged power emitted from a dipole

$$
\begin{aligned}
& P(\omega)={ }_{T \rightarrow \infty} \frac{\lim }{T} \iint V(\omega, \Omega) d \Omega={ }_{T \rightarrow \infty} \frac{1}{T} \frac{|\omega \mathbf{d}(\omega)|^{2}}{6 \pi^{2} \varepsilon_{0} c^{3}}= \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \frac{1}{6 \pi^{2} \varepsilon_{0} c^{3}}\left|\frac{1}{2} \omega T q \mathbf{x}_{0}\left[\operatorname{sinc}\left(\frac{\left(\omega-\omega_{0}\right) T}{2}\right)+\operatorname{sinc}\left(\frac{\left(\omega+\omega_{0}\right) T}{2}\right)\right]\right|^{2}= \\
& =\{\text { see Ch. } 4.5\} \ldots=\frac{q^{2} \omega_{0}{ }^{4} x_{0}{ }^{2}}{12 \pi \varepsilon_{0} c^{3}}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
\end{aligned}
$$

Applications: cyclotron emission

- An important emission process from magnetised particles is from the acceleration involved in cyclotron motion
- consider a charged particle moving in a static magnetic field $\mathbf{B}=B_{z} \mathbf{e}_{z}$

$$
\begin{aligned}
& \mathbf{a}(t)=\dot{\mathbf{v}}(t)=\frac{q}{m} \mathbf{v} \times \mathbf{B}=-\Omega \mathbf{e}_{z} \times \mathbf{v}, \Omega=\frac{q B}{m} \\
& {\left[\begin{array}{c}
\dot{v}_{x} \\
\dot{v}_{y} \\
\dot{v}_{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \Omega & 0 \\
-\Omega & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
v_{x}(t) \\
v_{y}(t) \\
v_{x}(t)
\end{array}\right]=\left[\begin{array}{c}
v_{\perp} \sin (\Omega t) \\
v_{\perp} \cos (\Omega t) \\
v_{\|}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\rho_{L} \cos (\Omega t) \\
\rho_{L} \sin (\Omega t) \\
v_{\|} t
\end{array}\right]}
\end{aligned}
$$

- where we have the Larmor radius $\rho_{L}=v_{\perp} / \Omega$
- This describe circular motion around magnetic field lines of force called the Larmor- or cyclotron-motion
- The period averaged radiation: $\bar{P}=\frac{q^{4} B^{2} v_{\perp}^{2}}{12 \pi \varepsilon_{0} c^{3} m^{2}}$
- Magnetized plasma; power depends on the temperature: $\bar{P} \propto v_{\perp}{ }^{2} \propto T$
- Electron cyclotron emission is one of the most common ways to measure the temperature of a fusion plasma!

Applications: wave scattering

- Consider a particle being accelerated by an external wave field

$$
\mathbf{E}(t, \mathbf{x})=\mathbf{E}_{0} \cos \left(\omega_{0} t-\mathbf{k}_{0} \cdot \mathbf{x}\right) \Rightarrow \mathbf{a}(t)=q \mathbf{E}(t, \mathbf{x}) / m
$$

- The Larmor formula then tell us the average emitted power

$$
\bar{P}=\frac{q^{4}\left|\mathbf{E}_{0}\right|^{2}}{12 \pi \varepsilon_{0} m^{2} c^{3}}
$$

- Note: that this is only valid in vacuum (restriction of Larmor formula)
- Rewrite in term of the wave energy density W_{0}
- in vacuum : $W_{0}=\varepsilon_{0}\left|\mathbf{E}_{0}\right|^{2} / 4+\varepsilon_{0}\left|\mathbf{k} \times \mathbf{E}_{0} / c \omega\right|^{2} / 4=\varepsilon_{0}\left|\mathbf{E}_{0}\right|^{2} / 2$

$$
\bar{P}=\frac{8 \pi}{3}\left(\frac{q^{2}}{4 \pi \varepsilon_{0} m c^{2}}\right)^{2} c W_{0}
$$

- Shown in the next page: This describe the fraction of the power density that is scattered by the particle, i.e. first absorbed and then re-emitted

Applications: wave scattering

- The scattering process can be interpreted as a collision
- Consider a density of wave quanta representing the power density W_{0}
- The wave quanta, photons, move with velocity c (speed of light)
- Imagine a charged particle as a ball with a cross section σ_{T}
- Then the power scattered per unit time is given by

$$
\bar{P}=\sigma_{\mathrm{T}} c W_{0}
$$

- The effective cross section for wave scattering on electrons

$$
\sigma_{\mathrm{T}}=\frac{8 \pi}{3} r_{0}^{2}, r_{0}=\frac{q^{2}}{4 \pi \varepsilon_{0} m c^{2}}
$$

Applications: Thomson scattering

- Scattering of waves against electrons is called Thomson scattering
- from this process the classical radius of the electron was defined as

$$
r_{e l e}=\frac{e^{2}}{4 \pi \varepsilon_{0} m_{e} c^{2}} \approx 2.8179 \times 10^{-15}[\mathrm{~m}]
$$

- Note: this is an effective radius for Thomson scattering and not a measure of the "real" size of the electron
- in general quantum mechanics is needed to understand the behavior of electrons at such short length scales
- Examples of Thomson scattering:
- In fusion devices, Thomson scattering of a high-intensity laser beam is used for measuring the electron temperatures and densities.
- The continous spectrum from the solar corona is the result of the Thomson scattering of solar radiation with free electrons
- The cosmic microwave background is thought to be linearly polarized as a result of Thomson scattering

Applications: Bremsstrahlung

- Bremsstrahlung (~Braking radiation) come from the acceleration associated with electrostatic collisions between charged particles (called Coulomb collisions)
- Note that the electrostatic force is "long range", $E \sim 1 / r^{2}$
- thus electrostatic collisions between charged particles is a smooth continuous processes
- Derivation: an electron moving near an ion with charge $Z e$

- since the ion is heavier than the electron, we assume $\mathbf{X}_{\text {ion }}(t)=0$
- the equation of motion for the electron and the emitted power are

$$
m_{e} \ddot{\mathbf{X}}(t)=-\frac{Z e^{2} \mathbf{X}(t)}{4 \pi \varepsilon_{0}|\mathbf{X}(t)|^{3}} \Rightarrow P(t)=\frac{2 Z^{2}}{3 m_{e}^{2} c^{3}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{3} \frac{1}{|\mathbf{X}(t)|^{4}}
$$

- this is the Bremsstrahlung radiation at one time of one single collision
- to estimate the total power from a medium we need to integrate over both the entire collision and all ongoing collisions!

Bremsstrahlung: Coulomb collisions

- Lets try and integrate the emission over all times

$$
W_{\mathrm{rad}}=\int_{-\infty}^{\infty} P(t) d t=2 \frac{2 Z^{2}}{3 m_{e}^{2} c^{3}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{3} \int_{r_{\mathrm{min}}}^{\infty} \frac{d r}{r^{4} \dot{r}(t)}
$$

- where we integrate in the distance to the ion r
- Now we need $r_{\text {min }}$ and $\dot{r}(t)$

- So, let the ion be stationary at the origin
- Let the electron start at $(x, y, z)=(\infty, b, 0)$ with velocity $\mathbf{v}=\left(-v_{0}, 0,0\right)$
- The conservation of angular momentum and energy gives

$$
\left.\begin{array}{l}
m_{e} r^{2} \dot{\theta}=m_{e} b v_{0} \\
m_{e}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}=\frac{1}{2} m_{e} v_{0}^{2}
\end{array}\right] \Rightarrow \dot{r}=v_{0} \sqrt{1+\frac{2 b_{0}}{r}-\frac{b^{2}}{r^{2}}}, b_{0}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} m_{e} v_{0}^{2}}
$$

- This is the Kepler problem for the motion of the planets!
- Next we need the minimum distance between ion and electron $r_{\text {min }}$

$$
\left.\dot{r}\right|_{r=r_{\min }}=0 \Rightarrow 1+\frac{2 b_{0}}{r_{\min }}-\frac{b^{2}}{r_{\min }^{2}}=0 \Rightarrow r_{\min }^{2}+2 b_{0} r_{\min }-b^{2}=0 \Rightarrow r_{\min }=b_{0}+\sqrt{b_{0}^{2}+b^{2}}
$$

Bremsstrahlung: Coulomb collisions

- Coulomb collisions are mainly due to "long range" interactions,
- i.e. particles are far apart, and only slightly change their trajectories (there are exceptions in high density plasmas)
- thus $r_{\text {min }} \approx b$ and $b_{0} \ll b$
- we are then ready to evaluate the time integrated emission

$$
W_{\mathrm{rad}}=2 \frac{2 \mathrm{Z}^{2}}{3 m_{e}^{2} c^{3}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{3} \int_{b}^{\infty} \frac{d r}{r^{4} v_{0} \sqrt{1+\frac{2 b_{0}}{r}-\frac{b^{2}}{r^{2}}}} \approx \ldots \approx \frac{\pi Z^{2}}{3 m_{e}^{2} c^{3} v_{0} b^{3}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{3}
$$

- This is now the emission from a single collision
- The cumulative emission from all particles and with all possible b and v_{0} has no simple general solution (and is outside the scope of this course)
- An approximate:

$$
P_{\mathrm{Br}} \propto Z_{i}^{2} n_{i} n_{e} \sqrt{T_{e}}
$$

- Thus it can be used to derive information about both the charge, density and temperature of the media

Industrial applications of Bremsstrahlung

- Typical frequency of Bremsstrahlung is in X-ray regime
- X-ray tubes: electrons are accelerated to high velocity When impacting on a metal surface they emit bremsstrahlung

- X-ray tubes are also used in
- CAT scanners
- airport luggage scanners
- X-ray crystallography
- industrial inspection.

Applications of Bremsstrahlung

- Astrophysics: High temerature stellar objects $\mathrm{T} \sim 10^{7}-10^{8} \mathrm{~K}$ radiate primarily in via bremsstrahlung
- Note: surface of the sun $10^{3}-10^{6} \mathrm{~K}$
- Fusion:
- Measurements of Bremsstrahlung provide information on the prescence of impurities with high charge, temperature and density
- Bremsstrahlung and cyclotron radiation power losses:
- Temperature at the centre of fusion plasma: $\sim 10^{8} \mathrm{~K}$; the walls are $\sim 10^{3} \mathrm{~K}$
- Main issue for fusion is to confine heat in plasma core
- However, both Bremsstrahlung and cyclotron radiation escape easily
- In reactor, radiation losses will be of importance - limits the reactor design
- If plasma gets too hot, then radiation losses cool down the plasma.

Outline

- Repetition: the emission formula and the multipole expansion
- The emission from a free particle - the Larmor formula
- Applications of the Larmor formula
- Harmonic oscillator
- Cyclotron radiation
- Thompson scattering
- Bremstrahlung
- Relativistic generalisation of Larmor formula
- Repetition of basic relativity
- Co- and contra-variant tensor notation
- Lorentz transformation and relativistic invariants
- Relativistic Larmor formula
- The Lienard-Wiechert potentials
- Inductive and radiative electromagnetic fields
- Alternative derivation of the Larmor formula
- Abraham-Lorentz force

Quick recap of special relativity

- Next we'll derive a Larmor formula that is valid at relativistic velocities
- But first we'll recap the some basic theory of special relativity
- Special relativity is based on two postulates
- Principle of relativity: The laws of physics are the same for all observers in uniform motion relative to one another
- The speed of light in a vacuum ($c=299792458 \mathrm{~m} / \mathrm{s}$) is the same for all observers, regardless of their relative motion, or of the motion of the source of the light
- These postulates have many surprising consequences, e.g.
- Relativity of simultaneity: Two events, simultaneous for one observer, may not be simultaneous for another observer if the observers are in relative motion.
- Time dilation: Moving clocks are measured to tick more slowly than a "stationary" clock:

$$
d T_{\text {moving }}=d T_{\text {stationary }} \sqrt{1-v^{2} / c^{2}}
$$

- Length contraction: Objects are measured to be shortened in the direction that they are moving with respect to the observer.
- Mass-energy equivalence: $E=m c^{2}$, energy and mass are equivalent and transmutable.

Background: Tensor formalism for special relativity

- The mathematical description of the "principle of relativity" is done with the so called Lorentz transform, which describe transformations between non-accelerated coordinate systems
- The Lorentz transform can be represented with the Minkowski formulation of spacetime [the 4D space spanned by time and real space (t, x, y, z)].
- In Minkowski spacetime every tensor has two representations
- a vector F can be represented by co-variant components, F_{μ}
- or by contra-variant components, F^{μ}
- think of them as e.g. "row vector" \& "column vector" components, the "bra" \& "ket" of quantum mechanics, or as "dual" spaces
- The Minkowski spacetime is a vector space with the inner product

$$
\langle F, G\rangle \equiv F^{\mu} G_{\mu}=F_{\mu} G^{\mu}=F_{1} G^{1}+F_{2} G^{2}+F_{3} G^{3}+F_{4} G^{4}
$$

- i.e. here summation over repeated indexes is implicit
- in this tensor formalism, index can be repeated only for multiplication of pairs of co- and contra-variant tensor components

Background: Tensor formalism for special relativity

- In the Minkowski formulation of spacetime the co- and contravariant component of the position vector for the point (t, x, y, z)

$$
\begin{aligned}
x_{\mu} & =[c t,-x,-y,-z] \\
x^{\mu} & =[c t, x, y, z]^{T}
\end{aligned}
$$

- thus $\|x\|^{2}=x_{\mu} x^{\mu}=c^{2} t^{2}-|\mathbf{r}|^{2}$
- Note: An alternative and equivalent definition is $x_{\mu}=[-c t, x, y, z]$
- Strange? ...we'll soon see why Minkowski choose this formulation
- Transformations between co- and contra-variant forms are performed with the metric tensor $g^{m n}$ or $g_{m n}$

$$
x_{\mu}=g_{\mu v} x^{\nu}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right] \Leftrightarrow x^{\nu}=g^{\nu \mu} x_{\mu}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Invariance of coordinate transformation

- Consider a moving object (moving in z-direction) viewed by an observer standing at the origin of a coordinate system $x^{\mu} \& x_{\mu}$
- The observer measures the speed of the object by measuring the position at two time points:

$$
v=[z(T)-z(0)] / T
$$

- The length of the 4 -vector of the plane from the first to the second measurement point is

$$
\|d x\|^{2}=d x^{\mu} d x_{\mu}=c^{2} d t^{2}-d z^{2}=c^{2} T^{2}-v^{2} T^{2}=c^{2} T^{2}\left(1-v^{2} / c^{2}\right)
$$

- Note: that $T \sqrt{1-v / c}$ is the retarded time experienced by the object!
- Second coordinate system $\tilde{x}_{\mu} \& \tilde{x}^{\mu}$, where the "moving" object is in rest
- measure the speed in the new coordinate system using the same time as the observer, i.e. $\|d \tilde{x}\|^{2}=d \tilde{x}^{\mu} d \tilde{x}_{\mu}=c^{2} d \tilde{t}^{2}-0$
- equation for time-dilation: $d \tilde{t}=T \sqrt{1-v^{2} / c^{2}} \Rightarrow\|d \tilde{x}\|^{2}=c^{2} T^{2}\left(1-v^{2} / c^{2}\right)$
- Thus, the length of a vector $d x^{\mu}$ is independent of the coordinate system, despite time dilation and length contraction!
- We say that $d x^{\mu} d x_{\mu}$ is an invariant under Lorentz transformations

Lorentz transformations

- Principle of relativity reformulated:

The laws of physics are invariants under Lorentz transformations

- The transformation operator is therefore a 2-tensor $L^{\mu}{ }_{v}$
- a transformation equation from x^{μ} to $x^{v^{\prime}}$ reads: $x^{v^{\prime}}=L^{v^{\prime}}{ }_{\mu} x^{\mu}$
- e.g. to a coordinate system moving in the x -direction with velocity $v=\beta c$:

$$
L_{\mu}^{v^{\prime}}=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \leadsto\left\{\begin{array}{l}
t^{\prime}=\gamma(t-\beta x) \\
x^{\prime}=\gamma(x-\beta t) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array} \begin{array}{l}
\text { Repeat calculation } \\
\text { from previous slide: } \\
d x^{\prime}=0 \Rightarrow d x=\beta d t \\
\Rightarrow d t^{\prime}=\gamma(d t-\beta \beta d t) \\
\ldots=d t / \gamma
\end{array}\right.
$$

- Invariance of inner product: $a^{u^{\prime}} b_{\mu^{\prime}}=a^{\lambda} b_{\lambda}$

$$
\left.\begin{array}{l}
a^{\mu^{\prime}} b_{\mu^{\prime}}=g_{\mu^{\prime} v^{\prime}} a^{u^{\prime}} b^{v^{\prime}}=g_{\mu^{\prime} v^{\prime}}\left(L_{\lambda}^{u^{\prime}} a^{\lambda}\right)\left(L_{\eta}^{v^{\prime}} b^{\eta}\right) \\
a^{\lambda} b_{\lambda}=g_{\eta \lambda} a^{\lambda} b^{\eta}
\end{array}\right] \begin{aligned}
& L \text { has to satisfy: } \\
& g_{\mu^{\prime} v^{\prime}} L_{\eta}^{\mu^{\prime}} L_{\lambda}^{v^{\prime}}=g_{\eta \lambda}
\end{aligned}
$$

Representation of physical quantities in special relativity

- For formulating physical laws we need 4-vector generalisation of common physical quantities; careful considerations yields
- position
- velocity
- momentum
- wave vector
- current density $\quad J^{\mu}=[\rho c, \mathbf{J}]$
- 4-vector potential $A^{\mu}=[\phi / c, \mathbf{A}]$
- Force $\quad F^{\mu}=[\gamma \mathbf{v} \cdot \mathbf{F} / c, \gamma \mathbf{F}]$
where $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$
- All these quantities has co-variant representations, e.g. $A_{\mu}=g_{\mu v} A^{v}$
- Any inner product between two of these quantities are invariant under Lorentz transformations!

Relativistic Larmor formula

- In special relativity the velocity and acceleration is defined in the frame of an arbitrary observer experiencing a time τ

$$
\begin{aligned}
& v^{\mu}(\tau)=\frac{\partial x^{\mu}(\tau)}{\partial \tau} \\
& a^{\mu}(\tau)=\frac{\partial^{2} x^{\mu}(\tau)}{\partial \tau^{2}}
\end{aligned} \quad \begin{aligned}
& v^{\mu}(\tau)=[c, \dot{x}, \dot{y}, \dot{z}]^{T} \\
& v_{\mu}(\tau)=[c,-\dot{x},-\dot{y},-\dot{z}] \\
& a^{\mu}(\tau)=[0, \ddot{x}, \ddot{y}, \ddot{z}]^{T} \\
& a_{\mu}(\tau)=[0,-\ddot{x},-\ddot{y},-\ddot{z}]
\end{aligned}
$$

- Since inner products are invariant under Lorentz transformations, thus $a^{\mu}(\tau) a_{\mu}(\tau)=-\ddot{x}^{2}-\ddot{y}^{2}-\ddot{z}^{2}=-|\mathbf{a}|^{2}$ is an invariant!
- Consider a single particle, then pick a system where it is at rest at time τ, but being accelerated by a force
- In this coordinate system the particle is non-relativistic and the (average) emitted power is given by the Larmor formula

$$
P(\tau)=-\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}} a^{\mu}(\tau) a_{\mu}(\tau)
$$

- since $a^{\mu} a_{\mathrm{u}}$ is an invariant, so is $P(\tau)$, i.e. above we have a relativistic Larmor formula!!

Relativistic Larmor formula

- Rewrite the acceleration in term of the 3-vector velocity \mathbf{v}

$$
\begin{aligned}
& a^{\mu}=\gamma^{2}\left[\frac{\gamma^{2}}{c} \mathbf{v} \cdot \dot{\mathbf{v}} \quad, \quad \dot{\mathbf{v}}+\frac{\gamma^{2}}{c^{2}} \mathbf{v}(\mathbf{v} \bullet \dot{\mathbf{v}})\right] \\
& a^{\mu} a_{\mu}=-\gamma^{2}\left(|\dot{\mathbf{v}}|^{2}-\frac{|\mathbf{v} \times \dot{\mathbf{v}}|^{2}}{c^{2}}\right) \\
& \Rightarrow P=\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}} \gamma^{2}\left(|\dot{\mathbf{v}}|^{2}-\frac{|\mathbf{v} \times \dot{\mathbf{v}}|^{2}}{c^{2}}\right)
\end{aligned}
$$

- Acceleration in special relativity is somewhat artificial
- instead use the force
- Larmor formula in terms of the 3-vector force \mathbf{F}

$$
P=\frac{q^{2}}{6 \pi \varepsilon_{0} c} \frac{\gamma^{2}}{m^{2} c^{2}}\left(|\mathbf{F}|^{2}-\frac{|\mathbf{v} \times \mathbf{F}|^{2}}{c^{2}}\right)
$$

Note: there's a typo in the book; the cross product is replaced by scalar product

Relativistic Larmor formula

- Let the object move perpendicular to the force

$$
\begin{aligned}
& |\mathbf{v} \times \mathbf{F}|=|\mathbf{v}| \mathbf{F} \mid \\
& P=\gamma^{2} \frac{q^{2}}{6 \pi \varepsilon_{0} c^{3} m^{2}} \mathbf{F}^{2}\left(1-\frac{|\mathbf{v}|^{2}}{c^{2}}\right)^{2}=\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3} m^{2}} \mathbf{F}^{2}
\end{aligned}
$$

- No relativistic correction!
- Let the object move along the force
- i.e. \mathbf{F} is parallel to \mathbf{v}

$$
\begin{aligned}
& \mathbf{v} \times \mathbf{F}=0 \\
& P=\gamma^{2} \frac{q^{2}}{6 \pi \varepsilon_{0} c^{3} m^{2}} \mathbf{F}^{2}
\end{aligned}
$$

- relativitstic correction by γ^{2} !

Outline

- Repetition: the emission formula and the multipole expansion
- The emission from a free particle - the Larmor formula
- Applications of the Larmor formula
- Harmonic oscillator
- Cyclotron radiation
- Thompson scattering
- Bremstrahlung
- Relativistic generalisation of Larmor formula
- Repetition of basic relativity
- Co- and contra-variant tensor notation
- Lorentz transformation and relativistic invariants
- Relativistic Larmor formula
- The Lienard-Wiechert potentials
- Inductive and radiative electromagnetic fields
- Alternative derivation of the Larmor formula
- Abraham-Lorentz force

Chapter 19: Alternative treatments of emission processes

- The traditional treatment of emission; study the emitted Poynting flux
- start with the scalar and vector potentials from single particle
- Lorentz gauge: the potentials follows d'Alemberts equation (Ch. 5)

$$
\left[\begin{array}{c}
\mathbf{A}(t, \mathbf{x}) / \mu_{0} \\
\phi(t, \mathbf{x}) \varepsilon_{0}
\end{array}\right]=\int d t^{\prime} d^{3} \mathbf{x}^{\prime} \frac{\delta\left(t-t^{\prime}-\mid \mathbf{x}-\mathbf{x}^{\prime} / c\right)}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\left[\begin{array}{l}
\mathbf{J}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \\
\rho\left(t^{\prime}, \mathbf{x}^{\prime}\right)
\end{array}\right]
$$

- When the sources is from a single particle

$$
\left[\begin{array}{c}
\mathbf{A}(t, \mathbf{x}) / \mu_{0} \\
\phi(t, \mathbf{x}) \varepsilon_{0}
\end{array}\right]=\int d t^{\prime} d^{3} \mathbf{x}^{\prime} \frac{\delta\left(t-t^{\prime}-\mid \mathbf{x}-\mathbf{x}^{\prime} / c\right)}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\left[\begin{array}{c}
q \dot{\mathbf{X}}\left(t^{\prime}\right) \delta\left(\mathbf{x}^{\prime}-\mathbf{X}\left(t^{\prime}\right)\right) \\
q \delta\left(\mathbf{x}^{\prime}-\mathbf{X}\left(t^{\prime}\right)\right)
\end{array}\right]
$$

- integrate over \mathbf{x} ’

$$
\left[\begin{array}{c}
\mathbf{A}(t, \mathbf{x}) / \mu_{0} \\
\phi(t, \mathbf{x}) \varepsilon_{0}
\end{array}\right]=\int d t^{\prime} \frac{\delta\left(t-t^{\prime}-\left|\mathbf{x}-\mathbf{X}\left(t^{\prime}\right)\right| c\right)}{4 \pi\left|\mathbf{x}-\mathbf{X}\left(t^{\prime}\right)\right|}\left[\begin{array}{c}
q \dot{\mathbf{X}}\left(t^{\prime}\right) \\
q
\end{array}\right]
$$

The Lienard-Wiechert potentials

- Be careful with integration over t^{\prime} !
- Note that t^{\prime} appear non-linearly in the Dirac delta
- Remember:

$$
\int d x \delta(g(x))=\sum_{x_{r}: g\left(x_{r}\right)=0}\left(g^{\prime}\left(x_{r}\right)\right)^{-1}
$$

- thus $\int d t^{\prime} \delta\left(t-t^{\prime}-\left|\mathbf{x}-\mathbf{X}\left(t^{\prime}\right)\right| / c\right)=\left[\frac{\partial}{\partial t_{r}}\left(t-t_{r}-\left|\mathbf{x}-\mathbf{X}\left(t_{r}\right)\right| / c\right)\right]^{-1}$

$$
=\ldots=\left[1-\frac{\left(\mathbf{x}-\mathbf{X}\left(t_{r}\right)\right) \cdot \dot{\mathbf{X}}\left(t_{r}\right)}{c\left|\mathbf{x}-\mathbf{X}\left(t_{r}\right)\right|^{2}}\right]^{-1}, \quad \text { where } t-t_{r}-\left|\mathbf{x}-\mathbf{X}\left(t_{r}\right)\right| c=0
$$

- the time t_{r} is known as the retarded time
- Note: $t-t_{r}-\left|\mathbf{x}-\mathbf{X}\left(t_{r}\right)\right| c=0$ is a non-linear equation for t_{r}
- The potentials can then be written as the Lienard-Wiechert potentials

$$
\left[\begin{array}{c}
\mathbf{A}(t, \mathbf{x}) / \mu_{0} \\
\phi(t, \mathbf{x}) \varepsilon_{0}
\end{array}\right]=\frac{q}{4 \pi \| \mathbf{x}-\mathbf{X}\left(t_{r}\right) \mid-\left(\mathbf{x}-\mathbf{X}\left(t_{r}\right)\right) \cdot \dot{\mathbf{X}}\left(t_{r}\right) / c}\left[\begin{array}{c}
\dot{\mathbf{X}}\left(t^{\prime}\right) \\
1
\end{array}\right]
$$

The Lienard-Wiechert potentials

- The Lienard-Wiechert potentials are simplified when choosing coordinate to locate the source to the origin $\mathbf{X}\left(t_{r}\right)=0$

$$
\left[\begin{array}{c}
\mathbf{A}(t, \mathbf{x}) / \mu_{0} \\
\phi(t, \mathbf{x}) \varepsilon_{0}
\end{array}\right]=\frac{q}{4 \pi\left(|\mathbf{x}|-\mathbf{x} \cdot \dot{\mathbf{X}}\left(t_{r}\right) / c\right)}\left[\begin{array}{c}
\dot{\mathbf{X}}\left(t_{r}\right) \\
1
\end{array}\right]
$$

- Note that the term $\mathbf{x} \cdot \dot{\mathbf{X}}\left(t_{r}\right) / c \sim v / c$ is a relativistic term
- The Lienard-Wiechert potentials are derived from Maxwells equations, thus they are automatically relativistically correct!

E and B from the Lienard-Wiechert potentials

- Calculate E and B field from the Lienard-Wiechert potentials

$$
\mathbf{E}=-\nabla \phi+\frac{\partial \mathbf{A}}{\partial t}, \mathbf{B}=\nabla \times \mathbf{A}
$$

- Note functional dependence $t_{r}=t_{r}(t, \mathbf{x})$ thus

$$
\begin{aligned}
& \nabla \phi\left(t_{r}(t, \mathbf{x}), \mathbf{x}\right)=\frac{\partial \phi\left(t_{r}, \mathbf{x}\right)}{\partial t_{r}} \nabla t_{r}+\mathbf{e}_{j} \frac{\partial}{\partial x_{j}} \phi\left(t_{r}, \mathbf{x}\right) \\
& \nabla \bullet \mathbf{A}\left(t_{r}(t, \mathbf{x}), \mathbf{x}\right)=\frac{\partial \mathbf{A}\left(t_{r}, \mathbf{x}\right)}{\partial t_{r}} \bullet \nabla t_{r}+\frac{\partial}{\partial x_{j}} A_{j}\left(t_{r}, \mathbf{x}\right) \\
& \frac{\partial}{\partial t} A_{i}\left(t_{r}(t, \mathbf{x}), \mathbf{x}\right)=\frac{\partial A_{i}\left(t_{r}, \mathbf{x}\right)}{\partial t_{r}} \frac{\partial t_{r}}{\partial t}
\end{aligned}
$$

- After lengthy calculations, using $\left\{r \equiv|\mathbf{x}|, \mathbf{n} \equiv \mathbf{x} /|\mathbf{x}|, \mathbf{a} \equiv \mathbf{a}\left(t_{r}\right), \mathbf{v} \equiv \mathbf{v}\left(t_{r}\right)\right\}$

$$
\mathbf{B}=\frac{\mathbf{n} \times \mathbf{E}}{c}, \mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{(\mathbf{x}-r \mathbf{v} / c)\left(1-v^{2} / c^{2}+\mathbf{x} \cdot \mathbf{a} / c^{2}\right)-\left(\mathbf{a} r / c^{2}\right)(r-\mathbf{x} \cdot \mathbf{v} / c)}{(r-\mathbf{x} \cdot \mathbf{v} / c)^{3}}
$$

Radiative and Inductive fields

- The electric field has term $\sim 1 / r$ and other $\sim 1 / r^{2}$; use $\mathbf{x}=\mathbf{n} r$

$$
\begin{aligned}
& \mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\left[(\mathbf{n}-\mathbf{v} / c)\left(1-v^{2} / c^{2}+r \mathbf{n} \bullet \mathbf{a} / c^{2}\right)-r\left(\mathbf{a} / c^{2}\right)((1-\mathbf{n} \bullet \mathbf{v} / c))\right]}{r^{2}(1-\mathbf{n} \bullet \mathbf{v} / c)^{3}}= \\
& =\frac{q}{4 \pi \varepsilon_{0}(1-\mathbf{n} \bullet \mathbf{v} / c)^{3}}\left\{\begin{array}{l}
\frac{(\mathbf{n}-\mathbf{v} / c) \mathbf{n} \bullet \mathbf{a}-(1-\mathbf{n} \bullet \mathbf{v} / c) \mathbf{a}}{c^{2} r}+\frac{(\mathbf{n}-\mathbf{v} / c)\left(1-v^{2} / c^{2}\right)}{r^{2}} \\
\text { Radiative }
\end{array}\right\}
\end{aligned}
$$

- Note: only the radiative terms depend on the acceleration
- Imagine radiation as emitted photons;
- Radiate N photons at $t=0,|\mathbf{x}|=0$, then at time $T>0$ you have N photons on the sphere with radius $R=c T$, i.e. the number of photons is independent of R.
- What energy (~number of photons) reach the sphere of radius R ?
- Radiative $W \sim \oint|\mathbf{E}|^{2} R^{2} d \Omega \sim|1 / R|^{2} R^{2} \sim 1$ for all R - free moving photons
- Inductive $W \sim \oint|\mathbf{E}|^{2} R^{2} d \Omega \sim\left|1 / R^{2}\right|^{2} R^{2} \sim R^{-2}$ virtual photons bound to not leave the particle unless absorbed by receiver particle

Simplified form for the electric field

- Simplify the radiative electric field (for improved interpretation)

$$
\mathbf{E}_{\mathrm{rad}}=\frac{q}{4 \pi \varepsilon_{0}(1-\mathbf{n} \cdot \mathbf{v} / c)^{3}}\left\{\frac{(\mathbf{n}-\mathbf{v} / c) \mathbf{n} \cdot \mathbf{a}-(1-\mathbf{n} \cdot \mathbf{v} / c) \mathbf{a}}{c^{2} r}\right\}
$$

- Simplify the numerator: $\mathbf{e}_{j} \cdot\{(\mathbf{n}-\mathbf{v} / c) \mathbf{n} \cdot \mathbf{a}-(1-\mathbf{n} \cdot \mathbf{v} / c) \mathbf{a}\}=$

$$
\begin{aligned}
& =\left\{n_{k} n_{j}-n_{k} v_{j} / c-\left(1-n_{m} v_{m} / c\right) \delta_{j k}\right\} a_{k}= \\
& =\left[n_{k} n_{j}-\delta_{j k}\right] a_{k}-\left[n_{k} v_{j}-n_{m} v_{m} \delta_{j k}\right] a_{k} / c
\end{aligned}
$$

- Use the vector identity:

$$
\begin{aligned}
& {[\mathbf{a} \times(\mathbf{b} \times \mathbf{c})]_{i}=\varepsilon_{i j k} \varepsilon_{k l m} a_{j} b_{l} c_{m}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) a_{j} b_{l} c_{m}=\left(a_{j} b_{i}-a_{j} b_{j}\right) c_{j}} \\
& \Rightarrow\left[n_{k} n_{j}-\delta_{j k}\right] a_{k}=[\mathbf{n} \times(\mathbf{n} \times \mathbf{a})]_{j} \&\left[n_{k} v_{j}-n_{m} v_{m} \delta_{j k}\right] a_{k}=[\mathbf{n} \times(\mathbf{v} \times \mathbf{a})]_{j}
\end{aligned}
$$

$$
\mathbf{E}_{\mathrm{rad}}=\frac{q}{4 \pi \varepsilon_{0} c^{2}} \frac{\mathbf{n} \times[(\mathbf{n}-\mathbf{v} / c) \times \mathbf{a}]}{(1-\mathbf{n} \cdot \mathbf{v} / c)^{3} r}
$$

$$
\mathbf{B}_{\mathrm{rad}}=\frac{q}{4 \pi \varepsilon_{0} c^{3}} \frac{\mathbf{n} \times\{\mathbf{n} \times[(\mathbf{n}-\mathbf{v} / c) \times \mathbf{a}]\}}{(1-\mathbf{n} \cdot \mathbf{v} / c)^{3} r}
$$

The Poynting flux

- Poynting flux radiated by a single charge particle, which at the retarded time t_{r} had velocity \mathbf{v} and acceleration a

$$
\mathbf{F}_{\mathrm{EM}}=\frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}}=\ldots=\frac{q^{2}}{16 \pi^{2} \varepsilon_{0} c^{2}} \frac{\mid \mathbf{n} \times[(\mathbf{n}-\mathbf{v} / c) \times \mathbf{a}]^{2}}{(1-\mathbf{n} \cdot \mathbf{v} / c)^{6} r^{2}} \mathbf{n}
$$

- The non-relativistic Poynting flux:

$$
\mathbf{F}_{\mathrm{EM}}=\frac{q^{2}}{16 \pi^{2} \varepsilon_{0} c^{2}} \frac{\mid \mathbf{n} \times[\mathbf{n} \times \mathbf{a}]^{2}}{r^{2}} \mathbf{n}+O(v / c)
$$

Radiated power - non-relativistic limit

- The Poynting flux is an energy flux
- The flux through a closed surface = the power leaving the enclosed region
- Encircle the particle with a large sphere with radius R
- The power leaving this sphere is

$$
\left.\left.P=\oiint_{r=R} d \mathbf{S} \cdot \mathbf{F}_{\mathrm{EM}}=\frac{q^{2}}{16 \pi^{2} \varepsilon_{0} c^{2}} \oiint d \Omega \right\rvert\, \mathbf{n} \times[\mathbf{n} \times \mathbf{a}]\right]^{2}+O(v / c)
$$

$$
\left\{\begin{array}{l}
\oiint d \Omega \mid \mathbf{n} \times[\mathbf{n} \times \mathbf{a}]]^{2}=\oiint d \Omega\left[\left(n_{k} n_{j}-\delta_{j k}\right) a_{k}\right]\left[\left(n_{m} n_{j}-\delta_{j m}\right) a_{m}\right]=\oiint d \Omega\left[a^{2}-\left(n_{k} a_{k}\right)^{2}\right]= \\
=\left\{\text { let }: n_{k} a_{k}=a \cos (v)\right\}=a^{2} \oiint d \Omega \sin ^{2}(v)=\{x=\sin (v)\}=\int_{0}^{2 \pi} d \phi \int_{-1}^{1} d x x^{2}=\frac{4}{3} \pi a^{2}
\end{array}\right\}
$$

- The non-relativistic power leaving the sphere is given by

$$
P(t, R)=\frac{q^{2} a\left(t_{r}\right)^{2}}{6 \pi \varepsilon_{0} c^{2}}+O(v / c)
$$

the radiated power at the retarded time t_{r} as given by the Larmor formula!

Sketch of emission in dispersive media

- The Poynting flux approach to emission can also be used in dispersive media, however this procedure may become tedious
- Start with the photon propagator for the wave equation

$$
A_{i}(t, \mathbf{x})=\int d \omega d^{3} \mathbf{k} \frac{\mu_{0} c^{2}}{\omega^{2}} \frac{\lambda_{i j}}{\Lambda} J_{j}(\omega, \mathbf{k}) e^{-i \omega t+i \mathbf{k} \cdot \mathbf{x}}
$$

- Particle source $J_{i}(\omega, \mathbf{k})=q \omega^{2} X_{i}(\omega, \mathbf{k})=q \omega^{2} \int d t e^{\text {iot }-\mathbf{k} \cdot \mathbf{x}(t)} X_{i}(t)$

$$
A_{i}(t, \mathbf{x})=q u_{0} c^{2} \int d t^{\prime} X_{i}\left(t^{\prime}\right) \int d \omega d^{3} \mathbf{k} \frac{\lambda_{i j}}{\Lambda} e^{\left.-i \omega\left(t-t^{\prime}\right)+i \mathbf{k} \cdot \mathbf{x}-\mathbf{x}\left(t^{\prime}\right)\right)}
$$

- The emitted power is now given by the energy flux, which now include both an electro-magnetic term and a particle term (Ch. 15)

$$
P_{f u x}=\oiint_{r=R} d \Omega\left(\mathbf{F}_{M}^{E M}+\mathbf{F}_{M}^{P}\right)=\oiint_{r=R} d \Omega \frac{\omega_{M}(\mathbf{k})}{\mu_{0}}\left\{2 \Re\left[A^{2} \mathbf{k}-\mathbf{A A}^{*} \cdot \mathbf{k}\right]-A_{i}^{*} \frac{\partial K_{i j}}{\partial \mathbf{k}} A_{j}\right\}
$$

- However, this formalism is often more tedious then treating emission in terms of the "work" as outlined earlier in this lecture.

Outline

- Repetition: the emission formula and the multipole expansion
- The emission from a free particle - the Larmor formula
- Applications of the Larmor formula
- Harmonic oscillator
- Cyclotron radiation
- Thompson scattering
- Bremstrahlung
- Relativistic generalisation of Larmor formula
- Repetition of basic relativity
- Co- and contra-variant tensor notation
- Lorentz transformation and relativistic invariants
- Relativistic Larmor formula
- The Lienard-Wiechert potentials
- Inductive and radiative electromagnetic fields
- Alternative derivation of the Larmor formula
- Abraham-Lorentz force

Self-forces

- Energy conservation: A particle emitting radiation losses energy

$$
E_{2}-E_{1}=\hbar \omega \quad \text { (from previous lecture - from quantum mechanics) }
$$

- Interpretation: the emitted wave performs work on the particle:

$$
W=\mathbf{F} \cdot \mathbf{v}=q \mathbf{E} \cdot \mathbf{v}=\mathbf{E} \cdot \mathbf{J}
$$

- The force from one particle onto itself is called the self-force
- Remember your first lecture on electrostatics
- two charged particles "1" and "2" exert a force on each other

$$
\mathbf{F}_{1}=-\mathbf{F}_{2}=\frac{q_{1} q_{2}\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)}{4 \pi \varepsilon_{0}\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{3}}
$$

- This says nothing about the force from a single particle on itself, i.e. the self-force, that is needed to describe emission
- ...this problem is only properly resolved in quantum mechanics!
- Here we'll derive the Abraham-Lorentz force
- classical treatment of radiation conserving energy and momentum

Radiation reaction

- This power emitted during radiation, according to the Larmor formula

$$
P(t)=\frac{q^{2}|\dot{\mathbf{v}}(t)|^{2}}{6 \pi \varepsilon_{0} c^{3}}
$$

- Construct a radiation-reaction force that describe the lost energy
- the work by this force: $P(t)=-\mathbf{v}(t) \bullet \mathbf{F}_{\text {react }}(t)$
- Time integration

$$
\int_{t_{1}}^{t_{2}} P(t) d t=\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}} \int_{t_{1}}^{t_{2}} \dot{v}(t)^{2} d t=-\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}}\left\{[\mathbf{v}(t) \bullet \dot{\mathbf{v}}(t)]_{t_{1}}^{t_{2}}-\int_{t_{1}}^{t_{2}} d t \mathbf{v}(t) \bullet \ddot{\mathbf{v}}(t)\right\}
$$

- To remove the first term, consider e.g. periodic motion, or events such that the acceleration is finite during event

$$
\int_{t_{1}}^{t_{2}} P(t) d t=-\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}} \int_{t_{1}}^{t_{2}} d t \mathbf{v}(t) \bullet \ddot{\mathbf{v}}(t)
$$

Abraham-Lorentz equation of motion

- Let the integrated power be represented by a reaction force

$$
\int_{t_{1}}^{t_{2}} P(t) d t=-\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}} \int_{t_{1}}^{t_{2}} d t \mathbf{v}(t) \cdot \ddot{\mathbf{v}}(t)=-\int_{t_{1}}^{t_{2}} d t \mathbf{v}(t) \cdot \mathbf{F}_{\text {react }}
$$

- Thus there is a force that recover the time integrated power

$$
\mathbf{F}_{\text {react }}=\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}} \ddot{\mathbf{v}}(t)
$$

- This does not imply that it represents the instantaneous force!
- The equation of motion under the influence of a self-force $\mathbf{F}_{0}(t)$

$$
m[\dot{\mathbf{v}}(t)-\tau \ddot{\mathbf{v}}(t)]=\mathbf{F}_{0}, \quad \tau=\frac{q^{2}}{6 \pi \varepsilon_{0} c^{3}}=\frac{2 Z^{2}}{3} \frac{r_{\text {ele }}}{c} \approx 10^{-24} \times Z^{2}[\mathrm{~s}]
$$

- this is the Abraham-Lorentz equation of motion
- Note: the force has a time scale τ, which is roughly the time it takes for light to travel across the classical radius of the electron, $r_{\text {ele }}$
- But there are serious problems with the Abraham-Lorentz equation!

Properties of the Abraham-Lorentz equation of motion

- First, there's a run-away solution possible in absence of any force

$$
m[\dot{\mathbf{v}}(t)-\tau \ddot{\mathbf{v}}(t)]=0 \Rightarrow \dot{\mathbf{v}}(t) \sim\left\{\begin{array}{c}
0 \\
e^{t / \tau} \longleftarrow \text { run-away! }
\end{array}\right.
$$

- Rewrite the Abraham-Lorentz equation to avoid the run-away solution

$$
m \dot{\mathbf{v}}(t)=\int_{0}^{\infty} \mathbf{F}_{0}(t+\tau x) e^{-x} d x
$$

- This equation has no run-away solutions
- However it includes pre-acceleration
- the force is evaluated in future times $t+\tau x$
- the particle responds to the force before the force is applied
- this is NOT causal mode!!!
- however, the time scale of pre-acceleration is tiny: $\tau=\frac{2 Z^{2}}{3} \frac{r_{\text {ele }}}{c}$

