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vag 10.
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address.

Responsible: Carlo Fischione, carlofi@kth.se
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1. Quantization of sensor observations

Consider a sensor sampling a bandlimited continuous time signal s(t) at time nTj,
where n is the sample number and 7} is the sampling interval. The signal is assumed
to lie within a predefined range [—A, A]. The sensor samples s(nT}) are then quan-
tized and a analog-to-digital (A/D) conversion follows. The A/D converter assigns
amplitude values in this range to a set of integers. The quantization interval is the
range of values assigned to the same integer. A B-bit converter produces one of the
integers {0, 1,...,25 —1} for each sampled input. The D/A converter then recovers
the original signal by converting integers to amplitudes and assigning an amplitude
equal to the value lying halfway in the quantization interval.

(a) [2p] Since values lying anywhere within a quantization interval are assigned the
same value, the original amplitude value is recovered with errors. Characterize
the distribution of the quantization error as function of the number of bits.

(b) [2p] Let be A the quantization interval. Let the quantization error be denoted by
e. Calculate the root mean square rms value of the quantization error.

(c) [2p] For a sinusoid signal s(t) characterize the signal to noise ratio resulting after
the quantization.

(d) [2p] How many bits would be required in the A/D converter to ensure that the
maximum amplitude quantization error is less than 60 dB smaller than the
signal’s peak value?

(e) [2p] Suppose that we would like to have a 16-bit quantization. To what signal-to-
noise ratio does this correspond?



2. MAC

Consider a simple ARQ scheme through a single transmission link of data rate R. In
ARQ), the sender transmits a data packet across the link. Once the receiver receives
the packet, it checks if data have been corrupted due to collisions with multiple
transmissions or bad channel. If there is no error, an acknowledgement packet is
sent to the sender to acknowledge the correct reception of the data packet. If there is
an error, an ARQ packet is sent for asking a retransmission. The sender resends the
packet immediately after it receives the ARQ packet. Assume the lengths of data
and ARQ packets are L and L ARQ respectively, and the propagation delay along
the link is given as t4. Neglect the turn-around time at the sender and the receiver.
Suppose that the probability the data packet is corrupted during transmission is P,,
whereas ARQ packets are always correctly received.

(a) [2p] Determine the average number of transmissions required for a packet to be
correctly received.

(b) [2p] Find the average delay a packet experiences. The delay is defined as the time
interval between the start of the first packet transmission and the end of the
correct packet reception. Note it does not include the transmission of the last
acknowledgement packet.

(¢) [2p] Now, suppose that the transmission of a packet is governed by a Slotted Aloha
MAC and that the number of competing senders n is not exactly known. We
assume that in each time slot each sender transmits with probability p. Argue
how P. defined above is related to p.

(d) [4p] In the Slotted Aloha MAC scenario defined above, let the probability that the
slot can be used (i.e. the probability that exactly one station transmits) be
Pr(success) = n-p(1—p)"~ L. If n is fixed, we can maximize the above expression
and get the optimal p. Now assume we only know that A < n < B, with A
and B being two known constants. What is the value of p that maximizes
Pr(success) for the worst n € [A, B]?



3. Routing

Let the required energy to send a packet from node A to node B be E(A, B) =
d(A, B)*, where d(A, B) is the distance between node A and B and « is a system
parameter with o > 2. Assume that you are allowed to place a number of equidistant
routing nodes between source node S and destination node T. Here, routing nodes
serve as intermediate nodes to route packets from S to T. For instance, if S and T
would use routing nodes A and B, the message would be sent from S to A, from A
to B and finally from B to T.

(a) [1p]

(b) [2p]

(¢) [2p]

(d) [3p]

(e) [2p]

Characterize the expression of the total energy consumption to route packets
from node A to T.

Based on the total energy derived above, give the ideal number of routing nodes
to send a message from S to T with minimum energy consumption and how
much energy would be consumed in such an optimal case.

Assume now an energy model that determines the energy required to send a
message from A to B as F(A, B) = d(A, B)* + ¢, with ¢ > 0. Argue why this
energy model is more realistic the the one described in the text of the exercise.

Consider the energy model introduced in last item. Show that there exists an
optimal number n of equidistant intermediate routing nodes between S and D
that minimizes the overall energy consumption when using these intermediate
nodes to route a packet from S to T. [Assume n as a continuous variable for
simplicity].

Derive a closed-form expression on how much energy will be consumed when
using this optimal number n of relay nodes. [Assume n as a continuous variable
for simplicity].



4. Distributed detection, MAC, and routing
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Figure 1: A grid of sensor nodes.

Sensor nodes are laid out on a square grid of spacing d, as depicted in Figure 1.
Ever sensor wants to detect a common source.

(a) [2p]

(b) [3p]

(c) [3p]

(d) [2p]

Suppose that the source signal has a Gaussian distribution with zero mean
and with variance o%. Moreover, every sensor measures such a signal with an
additive Gaussian noise of zero average and variance o2. If the measured signal
is positive, the sensor decides for hypothesis Hy, otherwise the sensor decides
for hypothesis H;. Based on the measured signal, characterize the probability
of false alarm and the probability of miss detection per every sensor.

Now, suppose that the source signal is constant and has a power S. Such
a signal power is received at every sensor with an attenuation given by r?,
where r; is the distance between the source and sensor ¢. Sensor node 1 is
malfunctioning, producing noise variance 1002 . The two best nodes in terms
of SNR will cooperate to provide estimates of the source. Characterize the
region of source locations over which node (1) will be among the two best
nodes.

The grid depicted in Figure 1 is also used for relaying. Assume it costs two
times the energy of a hop among nearest neighbors (separated by distance d) to
hop diagonally across the square (e.g. node 2 to 5) and eight times the energy
to go a distance of 2d in one hop (e.g. node 2 to 3). Let p be the packet loss
probability. Characterize p for which it is better to consider using two diagonal
hops to move around the malfunctioning node.

Under the same assumption of the previous item, suppose that there is an
ARQ protocol, but the delay constraints are such that we can only tolerate
three retransmission attempts. Let 0.99 be the probability of having up to
three retransmissions. Assuming packing dropping events are independent,
characterize the constraint that probability of packet losses per transmission
should satifsy.



5. Networked Control System
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u(kh) = —kx(kh)

Figure 2: Closed loop system over a WSN.

Consider the Networked Control System (NCS) in Fig. 2. The system consists of a
continuous plant

#(t) = Az(t) + Bu(t) (1a)
y(t) = Cx(t), (1b)

where A =a, B =1, C'=1. The system is sampled with sampling time h, and the
discrete controller is given by

u(kh) = —Kx(kh), k=0,1,2,...,
where K is a constant.

(a) [2p] Suppose that the sensor network has a medium access control and routing
protocols that introduce a delay 7 < h. Derive a sampled system corresponding
to Eq.(1) with a zero-order-hold.

(b) [2p] Under the same assumption above that the sensor network introduces a delay
7 < h, give an augmented state-space description of the closed loop system so
to account for such a delay.

(c) [3p] Under the same assumption above that the sensor network introduces a delay
7 < h, characterize the conditions for which the closed loop system becomes
unstable [Hint: no need of computing numbers, equations will be enough]

(d) [3p] Now, suppose that the network does not induce any delay, but unfortunately
introduces packet losses with probability p. Let » = 1 — p be the probability
of successful packet reception. Give and discuss sufficient conditions for which
the closed loop system is stable. If these conditions are not satisfied, discuss
what can be done at the network level or at the controller level so to still ensure
closed loop stability.



