
Solutions to Exam in EL2745 Principles of Wireless Sensor Networks, June 08, 2012

1. (a)

Consider a B-bit converter producing integers {0,1, . . .2B−1}. The quan-
tization interval for a signal with amplitude [−A,A] is

∆ =
A− (−A)

2B = A21−B

since D/A convertor recovers the signal by assigning the values to the
halfway of each interval ∆ then the quantization error ε can get any
value in the range [0,∆/2]. So ε has a uniform distribution U(0,∆/2)
with the pdf f (x) = 2/∆ for x ∈ [0,∆/2].

(a)(b) One can compute the root mean square rms(g(t)) of the signal g(t) on
the period [0,T ] as following

rms(g(t)) =

√
1
T

∫ T

0
[g(t)]2dt.

Given ∆ and knowing the interval of error [0,∆/2] the value of rms of
the quantization error is

rms(error) =

√
2
∆

∫ ∆

2

0
ε2dε =

√
∆2

12
.

(c) the signal to noise ratio resulting after the quantization is as following

SNR =
signal power
error power

=
rms(s(t))√

∆2

12

,

where rms(s(t)) for sinusoid signal with amplitude [−A,A] is obtained
as

rms(s(t)) =

√
1
T

∫ T

0
[Asin(

2πt
T

)]2dt =
A√
2
.

Hence, SNR reads as

SNR =

A√
2√
∆2

12

=

A√
2

A21−B√
12

=
√

62B−1 = 6B+10log(1.5)dB≈ 6B+1.76.

(d) By solving SNR≈ 6B+1.76 < 60 for B, we conclude B = 10 bits.

(e) A 16-bit A/D converter yields a SNR of 6×16+1.76 = 97.76dB.
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2. (a)

That the packet is correctly received after n transmissions is to say that
there are n−1 corrupted transmissions and 1 correct transmission. The
probability is thus given by

Pn = (1−Pe)Pn−1
e .

The average number of transmissions required for a correct reception
is

N =
∞

∑
n=0

nPn =
∞

∑
n=1

n(1−Pe)Pn−1
e

= (1−Pe)
d

dPe

∞

∑
n=1

Pn
e

= (1−Pe)
d

dPe

( Pe

1−Pe

)
=

1
1−Pe

(a)(b) Since there are a total number of N data packet transmission and N−
1 acknowledgement packet transmissions, the average delay experi-
enced by a packet is

D =
(L

R
+ td

)
N +

(LARQ
R

+ td
)
(N−1) ,

where N is the average number of transmissions from (a).

(c) The probability of error, Pe, in this context is the probability that at
least someone out of n− 1 nodes transmits given that one is already
transmitting. So Pe = 1− (1− p)n−1.

(d) We define the function P : R2→ R as

P(p,n) := Pr(success) = n · p(1− p)n−1 .

For a fixed p, P(p,n) is monotone increasing for n ≤ −1/ln(1− p)
and monotone decreasing for n≥−1/ln(1− p) and therefore P(p,n)
is minimized either at n = A or at n = B for n ∈ [A,B]. Therefore, we
have to find

p? = arg max
p

(min{P(p,A),P(p,B)}) .

For a fixed n, P(p,n) is monotone increasing for p ≤ 1/n and mono-
tone decreasing for p≥ 1/n (for p ∈ [0,1]). Furthermore, P(1/A,A)≥
P(1/A,B) and P(1/B,B)≥ P(1/B,A) for B≥ A+1 and therefore the
intersection between P(p,A) and P(p,B) is between the maxima of
P(p,A) and P(p,B), respectively. Thus p? is found where P(p?,A) =
P(p?,B). Therefore,

A · p? · (1− p?)A−1 = B · p? · (1− p?)B−1
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A
B
= (1− p?)B−1−(A−1) = (1− p?)B−A

p? = 1− B−A

√
A
B

3. (a)

If we consider k ≥ 0 and the intermediate nodes are equidistant, then
the sum of required energy between source and destination consider-
ing k intermediate node is as follows

E = (k+1)
(

d
k+1

)α

= dα(k+1)1−α.

(a)(b) since 1−α < 0 if k increases E decreases and in limit point, when k
goes to infinity E goes to zero. So there is no optimal number of nodes
to minimize the energy consumption (infinity number of nodes here
makes the energy to be zero).

(c) A new model of energy consumption with the constant value is more
realistic: E(A,B) = d(A,B)α +C. If we put this new formula in the
limit computed in part (a), the minimum required energy for trans-
mission would be a value greater than zero and it is more reasonable,
because in real world it is impossible to send data without any energy
consumption.

(d) We have

E = (k+1)
(

d
k+1

)α

+(k+1)C .

By taking the derivative

dE
dk

=

(
d

k+1

)α

−
(

d
k+1

)α

α+C =

(
d

k+1

)α

(1−α)+C

and putting it to zero, we have:

k = d
(

α−1
C

) 1
α

−1

which is the optimal number of intermediate nodes that minimizes the
overall energy consumption.

(e) If we put the computed value of k in previous case into the energy
consumption equation (of previous section), the following closed form
can be achieved:

E(S,T ) = (k+1)
(

d
k+1

)α

+(k+1)C

k = d
(

α−1
C

) 1
α

−1
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so

E(S,T ) = αd
(

C
α−1

)α−1
α

.

4. (a) Let x be the measured signal, which is given by the source’s trans-
mitted signal plus the measurement noise. Denote the false alarm as
Pr(x < 0,D = H0), and miss detection as Pr(x > 0,D = H1), where x
is the signal and D is the decision made by per every node. For the
false alarm, we have

Pr(x < 0,D = H0) =Pr(x < 0)Pr(D = H0|x < 0)

=
1
2

∫ 0

−∞

∫
∞

−x

1
σn

e
− y2

2(σ2n+σ2
S) dydx .

Similarly, we have

Pr(x > 0,D = H1) =Pr(x > 0)Pr(D = H1|x > 0)

=
1
2

∫
∞

0

∫ −x

−∞

1
σn

e
− y2

2(σ2n+σ2
S) dydx .

(b) Let ri be the distance from the source to a node, and let S be the signal
power. Then for node 1 to be involved in a decision rather than some
other node one must have

S
10r2

1
>

S
r2

i
⇒ ri

r1
>
√

10

For reasons of symmetry, we need only consider one of the nodes 2-6
with node 1 as the origin. Without loss of generality, let the source at
position (x,y) and consider the equal SNR respecting to node 3. Then
we have

r2
3

r2
1
=

(x−d)2 + y2

x2 + y2 = 10⇒
(x+ 1

9d)2

(
√

10
9 d)2

+
y2

(
√

10
9 d)2

= 1 ,

which is an ellipse with center in (−d/9,0) having x- and y-axis radius
(d
√

10/9,d
√

10/9) shown as the curve of E1 in Fig. 1. The regions
over which node 1 is better than node 2,3 and 5.6 are shown in Fig. 1 as
E1,E2 and E3,E4 respectively. Thus when the source in the shadowed
region in Fig. 1, node 1 is among the two best nodes.

(c) The alternate route will be selected if the expected number of trans-
missions into and out of the malfunctioning node is 2 or greater. Let
the packet dropping probability be p. The last successful transmission
will have probability (1− p). Then the expected number of transmis-
sions is

1(1− p)+2p(1− p)+3p2(1− p)+ · · ·= 2

Solving above equality we have ∑
∞
i=0(i+1)pi(1− p) = 1/(1− p) = 2

and hence, p = 0.5.
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Figure 1: The region over which node 1 is better than others.

(d) The probability of requiring less than or equal to 3 transmissions is

(1− p)+ p(1− p)+ p2(1− p) = 0.99

This is a cubic in p and can be solved in any number of ways. A prob-
ability of 0.2 is close. Thus the delay requirement leads more quickly
to choice of alternative paths in this example.

5. (a) Since τ< h, at most two controllers samples need be applied during the
k-th sampling period: u((k− 1)h) and u(kh). The dynamical system
can be rewritten as

ẋ(t) = Ax(t)+Bu(t), t ∈ [kh+ τ,(k+1)h+ τ)

y(t) =Cx(t) ,

u(t+) =−Kx(t− τ), t ∈ {kh+ τ, k = 0,1,2, . . .}

where u(t+) is a piecewise continuous and changes values only at kh+
τ. By sampling the system with period h, we obtain

x((k+1)h) = Φx(kh)+Γ0(τ)u(kh)+Γ1(τ)u((k−1)h)
y(hk) =Cx(kh) ,

where

Φ = eAh = eah ,

Γ0(τ) =
∫ h−τ

0
eAsBds =

1
a

(
ea(h−τ)−1

)
,

Γ1(τ) =
∫ h

h−τ

eAsBds =
1
a

(
eah− ea(h−τ)

)
.

given that A = a,B = 1,C = 1.
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(b) Let z(kh) = [xT (kh),uT ((k− 1)h)]T be the augmented state vector,
then the augmented closed loop system is

z((k+1)h) = Φ̃z(kh) ,

where

Φ̃ =

[
Φ−Γ0(τ)K Γ1(τ)
−K 0

]
.

Using the results obtained in (a), we can obtain

Φ̃ =

[
eah− 1

a

(
ea(h−τ)−1

)
K 1

a

(
eah− ea(h−τ)

)
−K 0

]
.

(c) The characteristic polynomial of this matrix is

λ
2−
(

eah− 1
a

(
ea(h−τ)−1

))
K +

K
a

(
eah− ea(h−τ)

)
.

Thus when the max |λ|> 1, the closed loop system becomes unstable.

(d) We use the following result to study the stability of the system:

Theorem 0.1 Consider the system given in Fig. 2. Suppose that the
closed-loop system without packet losses is stable. Then

• if the open-loop system is marginally stable, then the system is
exponentially stable for all 0 < r ≤ 1.
• if the open-loop system is unstable, then the system is exponen-

tially stable for all

1
1− γ1/γ2

< r ≤ 1 ,

where γ1 = log[λ2
max(Φ−ΓK)], γ2 = log[λ2

max(Φ)]

Here we have

Φ = eAh = eah ,

Γ =
∫ h

0
eAsBds =

1
a

(
eah−1

)
.

Thus, the stability of this system depends on the values of K,h,a.
When the conditions are not satisfied, we may choose different K for
controller or different sampling time h for the system to make the sys-
tem stable.
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