Solutions to Exam in EL2745 Principles of Wireless Sensor Networks, June 08, 2012

1. (a)

Consider a B-bit converter producing integers {0, 1,...2871}. The quan-
tization interval for a signal with amplitude [—A,A] is

:A21—B

since D/A convertor recovers the signal by assigning the values to the
halfway of each interval A then the quantization error € can get any
value in the range [0,A/2]. So € has a uniform distribution (0,A/2)
with the pdf f(x) =2/A forx € [0,A/2].

(a) One can compute the root mean square rms(g(¢)) of the signal g(¢) on
the period [0, 7] as following

ms(g(r)) =4/ = / 1))3dt.
T

Given A and knowing the interval of error [0,A/2] the value of rms of
the quantization error is

[2 3 /A2
rms(error) = K/z e2de = o
0

(c) the signal to noise ratio resulting after the quantization is as following

SNR — signal power rms(s(t))’
error power A2
12

where rms(s(z)) for sinusoid signal with amplitude [—A,A] is obtained

as
N ;
I‘HlS Sll’l .
\/i

Hence, SNR reads as

A A
SNR = Y2 = —¥2_ = \/62P " = 6B+ 10log(1.5)dB ~ 6B+ 1.76.
ARG

(d) By solving SNR ~ 6B+ 1.76 < 60 for B, we conclude B = 10 bits.
(e) A 16-bit A/D converter yields a SNR of 6 x 16 +1.76 = 97.76dB.
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That the packet is correctly received after n transmissions is to say that
there are n — 1 corrupted transmissions and 1 correct transmission. The
probability is thus given by

P,=(1-P)P" !

e

The average number of transmissions required for a correct reception
is

N=Y nP,=Y n(1-P)P}"!
=0 n=1
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Since there are a total number of N data packet transmission and N —
1 acknowledgement packet transmissions, the average delay experi-
enced by a packet is

D= <%+td>N-|- (LAII;Q +zd) (N—1),

where N is the average number of transmissions from (a).

The probability of error, P,, in this context is the probability that at
least someone out of n — 1 nodes transmits given that one is already
transmitting. So P, = 1 — (1 — p)"~ 1.

We define the function P : R? — R as

P(p,n) :=Pr(success) =n-p(1 —p)"~!.

For a fixed p, P(p,n) is monotone increasing for n < —1/In(1 — p)
and monotone decreasing for n > —1/In(1 — p) and therefore P(p,n)
is minimized either at n = A or at n = B for n € [A, B]. Therefore, we
have to find

pr= arg;nax(min{P(p,A),P(p,B)}) )

For a fixed n, P(p,n) is monotone increasing for p < 1/n and mono-
tone decreasing for p > 1/n (for p € [0, 1]). Furthermore, P(1/A,A) >
P(1/A,B) and P(1/B,B) > P(1/B,A) for B> A+ 1 and therefore the
intersection between P(p,A) and P(p,B) is between the maxima of
P(p,A) and P(p,B), respectively. Thus p* is found where P(p*,A) =
P(p*,B). Therefore,

A-p*-(l _p*)A—l =B-p*-(1 _p*)B—l
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If we consider £ > 0 and the intermediate nodes are equidistant, then
the sum of required energy between source and destination consider-
ing k intermediate node is as follows

E=(k+1) <k%>a =d*(k+1)"%

since 1 — o < 0 if k increases E decreases and in limit point, when k
goes to infinity E goes to zero. So there is no optimal number of nodes

to minimize the energy consumption (infinity number of nodes here
makes the energy to be zero).

A new model of energy consumption with the constant value is more
realistic: E(A,B) = d(A,B)* 4+ C. If we put this new formula in the
limit computed in part (a), the minimum required energy for trans-
mission would be a value greater than zero and it is more reasonable,
because in real world it is impossible to send data without any energy
consumption.

We have

E=(k+1) (lj_—l)a+(k+1)c.

By taking the derivative

dE d \* d \* d \*
a“ad_ (L) _ (4 c=(—) (- C
dk (k+1) (k+1> *F (k+1) (1-a)+

and putting it to zero, we have:

1
k:d(oc—1> _q
C

which is the optimal number of intermediate nodes that minimizes the
overall energy consumption.

If we put the computed value of k in previous case into the energy
consumption equation (of previous section), the following closed form
can be achieved:

E(S,T)=(k+1) <k%>a+(k+1)c
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E(S,T)=ad (%) N :

Let x be the measured signal, which is given by the source’s trans-
mitted signal plus the measurement noise. Denote the false alarm as
Pr(x < 0,D = Hp), and miss detection as Pr(x > 0,D = H;), where x
is the signal and D is the decision made by per every node. For the
false alarm, we have

Pr(x < 0,D = Hy) =Pr(x < 0) Pr(D = Hy|x < 0)

2
__y
2(c7+0%)
—e s dvydx.
2 / —xOp Y

Similarly, we have

Pr(x > 0,D = H;) =Pr(x > 0)Pr(D = H;|x > 0)

—X 1 _ )
2/ / 2(07+03) s dydx .

Let r; be the distance from the source to a node, and let S be the signal
power. Then for node 1 to be involved in a decision rather than some
other node one must have

B B VAT

IOr% rl.2 r

For reasons of symmetry, we need only consider one of the nodes 2-6
with node 1 as the origin. Without loss of generality, let the source at
position (x,y) and consider the equal SNR respecting to node 3. Then
we have

B _lbmdPey L btsd)? —1

Yy
rt x24y2 (@d)z * (\/Trod)z ’

which is an ellipse with center in (—d/9,0) having x- and y-axis radius
(dv/10/9,d+/10/9) shown as the curve of El in Fig. 1. The regions
over which node 1 is better than node 2,3 and 5.6 are shown in Fig. 1 as
E1,E2 and E3,E4 respectively. Thus when the source in the shadowed
region in Fig. 1, node 1 is among the two best nodes.

The alternate route will be selected if the expected number of trans-
missions into and out of the malfunctioning node is 2 or greater. Let
the packet dropping probability be p. The last successful transmission
will have probability (1 — p). Then the expected number of transmis-
sions is
1(1=p)+2p(1—p)+3p*(1—p)+--- =2

Solving above equality we have Y o (i+1)p'(1—p)=1/(1—p) =2
and hence, p =0.5.
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Figure 1: The region over which node 1 is better than others.

The probability of requiring less than or equal to 3 transmissions is

(1—p)+p(1—p)+p*(1—p) =0.99

This is a cubic in p and can be solved in any number of ways. A prob-
ability of 0.2 is close. Thus the delay requirement leads more quickly
to choice of alternative paths in this example.

Since T < h, at most two controllers samples need be applied during the
k-th sampling period: u((k — 1)h) and u(kh). The dynamical system
can be rewritten as

x(t) = Ax(t) + Bu(t), t€lkh+r,(k+1)h+7)
y(t) = Cx(t),

u(tt)y=—Kx(t—r1), tel{kh+t, k=0,1,2,...}

where u(t1) is a piecewise continuous and changes values only at ki +
7. By sampling the system with period &, we obtain

x((k+1)h) = ®x(kh) +To(t)u(kh) + T (t)u((k—1)h)
y(hk) = Cx(kh),

where
b = M = o
h—1 1
Tot)= [ MBds=— <ea<’1—f> - 1) :
0 a
h 1
I'i(t)= / ¢NBds = - (e“h - ea(h_r)) :
h—1 a

giventhat A =a,B=1,C = 1.
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Let z(kh) = [x” (kh),u’ ((k — 1)h)]" be the augmented state vector,
then the augmented closed loop system is

2((k+1)h) = dz(kh),

where

& { CID—E%(*C)K rl(gr) ] .

Using the results obtained in (a), we can obtain

oah _% (ea(h—‘t) _ 1) K % (eah _ ea(h—‘t))
—K 0 ] '

D=

The characteristic polynomial of this matrix is

22 (eah_ % <ea(h—I) _ 1>) K—l-g <eah_ea(h—r)> ‘

Thus when the max |A| > 1, the closed loop system becomes unstable.

We use the following result to study the stability of the system:

Theorem 0.1 Consider the system given in Fig. 2. Suppose that the
closed-loop system without packet losses is stable. Then

e if the open-loop system is marginally stable, then the system is
exponentially stable for all 0 < r < 1.

e if the open-loop system is unstable, then the system is exponen-
tially stable for all

1

<<
1-71/v2

— b

where Y1 = logp\’lznax (CI) - FK)]’ Y2 = log[}\’rznax<q))]

Here we have

q) — eA/l — eah

Y

F:/OheAsBds:£<e“h—1>.

Thus, the stability of this system depends on the values of K,h,a.
When the conditions are not satisfied, we may choose different K for
controller or different sampling time 4 for the system to make the sys-
tem stable.



