

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

BASICS & CHALLENGES

Dr Konstantinos Dimou

Senior Research Engineer

Ericsson Research

konstantinos.dimou@ericsson.com

Overview

- Machine To Machine (M2M) Communications within 3GPP
- > Discussion/Summary
- Required Changes To 3GPP Systems

 Initial Tests Performance

REQUIRED CHANGES TO 3GPP SYSTEMS FOR MACHINE TYPE COMMUNICATION

What kind of changes are needed ?

- LTE & HSPA target Mobile broadband (MBB) access
 - High data rates
 - -@any speed
 - High capable end user terminals, e.g. smartphones, tablets
- Machine type (in the most common initial scenarios) involving
 - Low data rates
 - Low or no mobility
 - cost competitive devices

Signaling overhead reduction Low power consumption

SIGNALING OVERHEAD

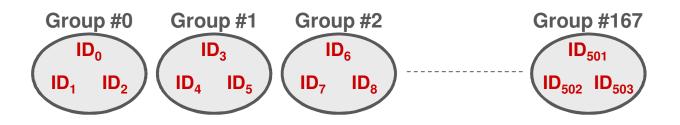
System Functionality

> Cell search/synchronization

- Significant amount of System Information broadcasting
- 6 step approach for random access for connection establishment in case of collisions

Data Transmissions

- Scheduling
 - Many options of channel quality reporting, involving extensive reporting options
- Radio Link adaptation & monitoring
 - > HARQ
 - > Closed Loop Power Control



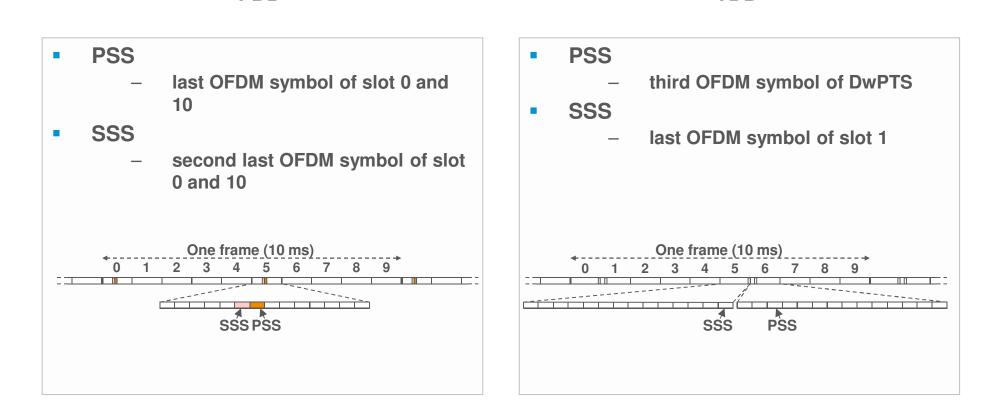
Cell Search

- > Obtain identity and timing of candidate cells
- > Physical-layer cell identity
 - Corresponds to a specific reference-signal sequence
 - > 504 different reference-signal sequences ⇒ 504 different Cell Identities
 - − 168 Cell-Identity groups with 3 Cell Identities per group
 ⇒ 3 RS sequences per group
 - Each cell identity corresponds to a certain RS Frequency Shift

Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 7 (29)

Synchronization Signals

- > Two synchronization signals transmitted once per 5 ms
 - Two subframes in each radio frame used for synchronization signals
- > Primary synchronization signal (PSS)
 - -1 of 3 different sequences
 - Provides identity within cell identity group
 - Same sequence in both subframes within a frame
 - ➡ 5 ms timing (but frame timing unknown)
- Secondary synchronization signal (SSS)
 - -1 of 168 different sequences
 - Provides cell identity group
 - Different sequences in the two subframes of a frame
 - ➡ frame timing
- > PSS and SSS detected
 - frame timing, RS structure, PBCH location known
 - possible to read BCH



Synchronization Signals

FDD

Location of synchronization signal differs between FDD and TDD

TDD

Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 9 (29)

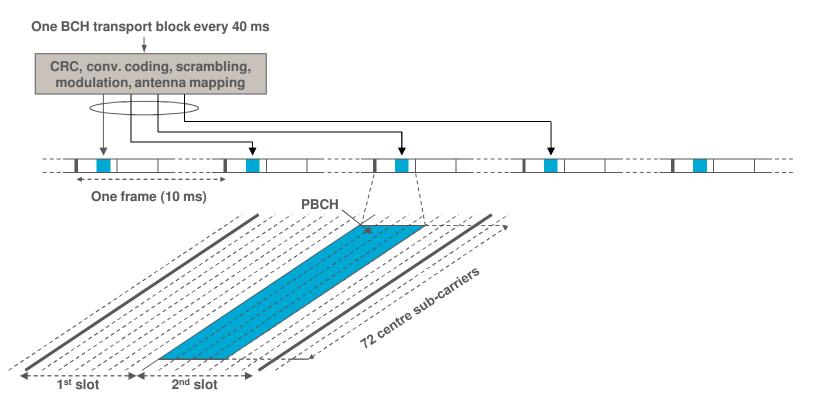
Synchronization For Machine Type Communications

- Cell search procedure, synchronization sequences and whole channel structure quite suitable for machine type communications
 - At least for the initial synchronization to the system
- For stationary devices & for synchronization procedures after the very initial one structures resulting in lower energy consumption in devices can be devised

System Information

- Contains information necessary to access the cell
 Cell bandwidth, UL/DL allocation for TDD, ...
- Master Information Block (MIB)
 - Limited amount of information necessary to read SIBs
 - > DL cell bandwidth, PHICH configuration, system frame number (SFN)

> System Information Blocks (SIBs)


- Main part of system information
- Organized in SIB1 to SIB16
 - > Containing information related to
 - Permission for accessing the cell
 - Random access configuration
 - Mobility related parateters

- ...

Transmission of MIB on BCH

Special processing compared to DL-SCH

- Tail-biting convolutional coding
- 40 ms TTI
- Not mapped to resource blocks

Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 12 (29)


System Information For Machine Type Communications

- System information structure suitable for machine type communications as well
- For stationary devices probably most of system information not useful
 - E.g. related to mobility
 - "Lighter" version of SIBs might be devised

Physical Random Access Channel *PRACH* – principle

 For case the UE does not have any dedicated resource (i.e. initial access and resynchronisation), access is done on a common resource, PRACH, to acquire:

- Uplink time alignment
- Dedicated resources
- To minimize the signalling on common resources only a preamble sequence on PRACH
 - Data is not transmitted on PRACH only on PUSCH
 - If eNB detects preamble sequence it provides dynamic resources for data transmission on PUSCH
 - Potential collisions are resolved by higher layers

PRACH – physical resource

Time

- Basic duration is 1 ms in time duration

- Time and frequency location provided as part of system information

- Scheduler can avoid scheduling data on PRACH resources
- > Frequency

- Bandwidth of 6 RB

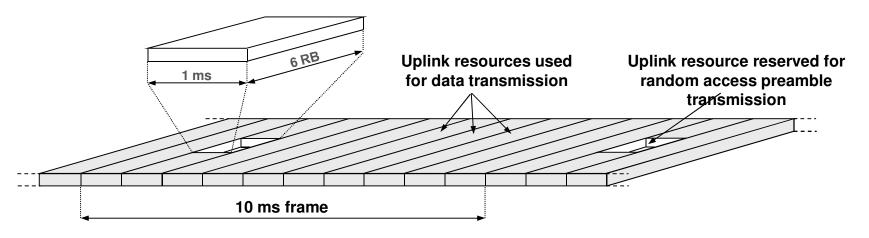


Figure illustrates configuration 0-3. For TDD, configuration 4 available in addition, locating PRACH in UpPTS.

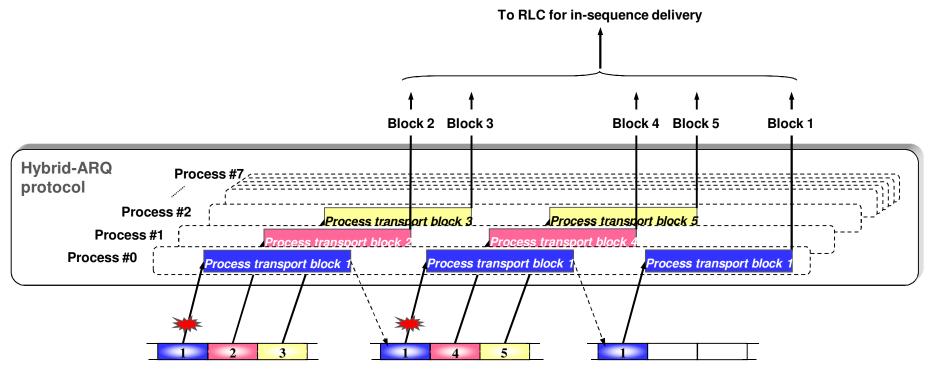
Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 15 (29)

PRACH – Preamble Formats

3

- Preamble format
- Cyclic shift
- Different configurations supported to handle different deployments
 - Configuration 0-3 shown below
 - Configuration 4 (TDD only) is a short preamble, located in UpPTS

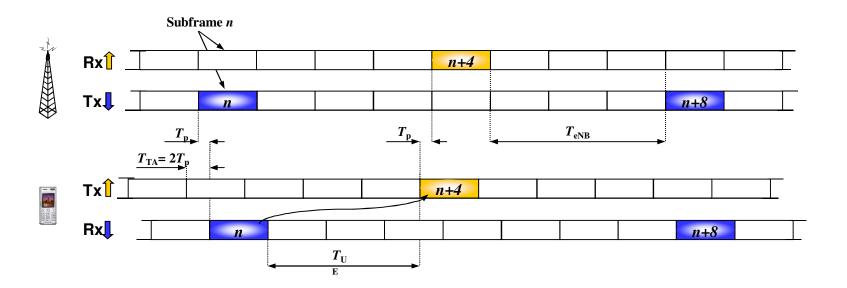
Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 16 (29)


Random Access For Machine Type Communications

- Current channel structure and sequence structure rather "heavy" also applicable for machine type communications
- Reduction of the number of messages exchanged to establish a connection
- Use RACH for transmitting data as well, could be another option

Hybrid-ARQ with Soft Combining

- Same basic structure as HSPA
 - Parallel stop-and-wait processes
 - 8 processes ➡ 8 ms roundtrip time (for FDD)
- Incremental redundancy (through rate matching mechanism)
 - Support for chase combining and incremental redundancy
- More details in L2 presentation



Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 18 (29)

Hybrid ARQ – FDD

- > 8 hybrid-ARQ processes
 - One-to-one mapping between downlink and uplink subframes
- Soft buffer size depends on UE category
- ~3 ms processing time in UE and eNB
 - UE need to handle up to 100 km cells ➡ ~2.3 ms processing time

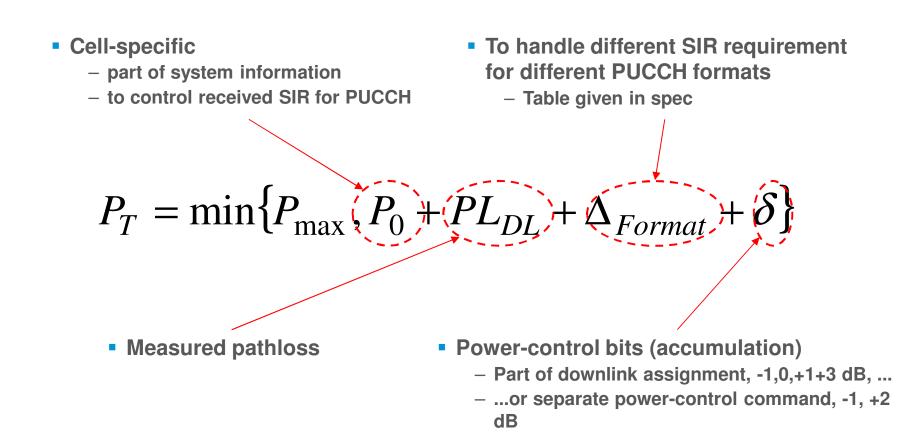
Machine To Machine Communications - Part II | KTH | Seminars in Signals, Sensors & Systems | Ericsson External | 2013-03-04 | Page 19 (29)

HARQ For Machine Type Communications

- > Current channel HARQ procedure involves
 - Fast feedback mechanism
 - High speed processing
- > No direct fit to traffic type expected within MTC
 - High signaling overhead for the expected benefits
 - Requires high processing power
- Simplified feedback schemes can be devised, especially for stationary devices

> Partial HARQ use another option

Uplink Power Control



Closed-loop power control around open-loop setpoint
 Separate loops for PUSCH and PUCCH

- > Two possibilities for sending power-control commands
 - Part of scheduling decision
 - Separate power-control command

Uplink Power Control – PUCCH

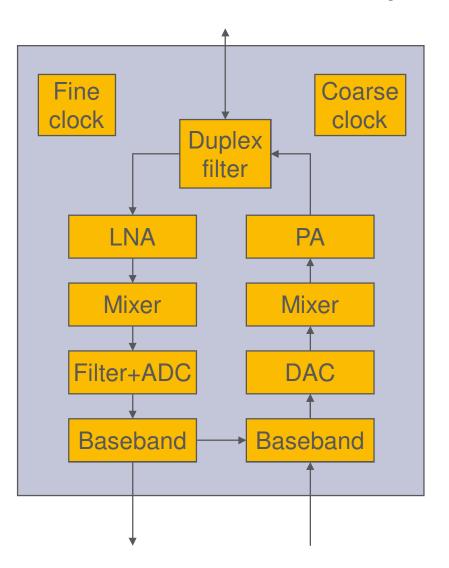
Uplink Power Control – PUSCH

2

• Scheduled PUSCH
bandwidth
- control power spectral
density
(power per resource block)

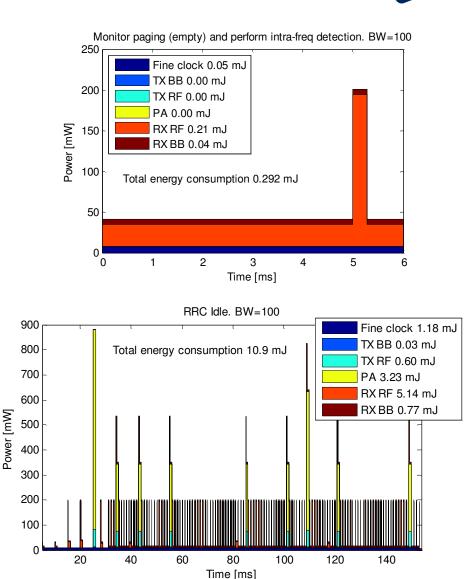
$$P_T = \min\{P_{\max}, P_0 + \alpha \cdot PL_{DL} + 10 \cdot \log_{10}(M) + \Delta_{MCS} + \delta\}$$
• Fractional pathloss
compensation
- 0 (no pathloss compensation),
0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1 (full pathloss compensation)

Uplink Power Control For Machine Type Communications


- > Current power control mechanism involves
 - Fast feedback mechanism
 - High speed processing
- Considering
 - the low amount of traffic involved in these applications and that
 - machine type devices are stationary
 - uplink power control is quite "heavy" for MTC
- Solutions with constant transmission power levels can be imagined

POWER CONSUMPTION

Power Consumption Model


- > Detailed model developed
 - Based on UE function blocks
 - Applicable to HSPA and LTE
- Influencing factors
 - Activity time (each block)
 - Output power
 - Bandwidth
 - Bitrate
- Assumptions in this study
 - Aggressive optimizations for sensor device type

POWER Consumption Examples


- IDLE mode power consumption
 - Paging monitoring
 - Measurements
 - Periodic tracking area updates

- Connected mode power consumption
 - Connection setup signaling
 - Uplink payload
 - Connection release signaling

POWER Consumption 3GPP LTE release 8

- Inactive periods dominate energy consumption
 - Except for very short packet intervals
- Packet size 100 B
- > Battery lifetime less than a year

Summary/Discussion

- Challenges related to introduction of machine type communication to 3GPP
- > 3GPP systems not devised for this type of communication
- Considerable engineering work required

ERICSSON