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Study questions
2013-03-06

1. Describe the Euler and the Lagrange coordinate systems and derive the
expression for the rate of change of a given quantity F in the Euler coor-
dinate system.

2. State the definition of the material derivative,
D

Dt
, and explain the mean-

ing of its different components.

3. State the compressible continuity, momentum and energy equations in
non-dimensional form and give the definition of the flow parameters.

4. What is the definition of a Newtonian fluid? Give the expression for
viscous stress tensor for such a fluid (define the coefficients involved).
What is the Stokes hypothesis in this context?

5. Consider the incompressible Navier–Stokes equation in 2D:

a) Derive the boundary-layer equation in x-direction.

b) Which condition for the pressure field is found from the boundary-
layer approximations applied to the y-momentum equation?

6. Describe when a system of partial differential equations together with
initial and boundary conditions is well posed. Give one example of an
equation with initial and boundary conditions that is well posed, and one
example that is not well posed.

7. Numerical accuracy

a) In homework 2, the ”machine epsilon” ε has been discussed. Give
its approximative value for default MATLAB variables. What is this
accuracy level usually referred to, and how many bytes of storage is
required for a single floating-point variable of that type? Give also
a definition of ε, relating it to the error of a floating-point number.

b) Assume a (fairly inaccurate) computer with ε = 10−3. Using the
formula for error propagation, compute the relative error of adding
the two floating-point numbers x = 1.00 and y = 1.01. How large is
the absolute error (i.e. x+ y = 2.01±??)?

c) Using the same computer as in b), compute now the numerical dif-
ference x − y and give again the relative and absolute error of the
result.

8. Show that the heat equation

∂u

∂t
= ν

∂2u

∂x2

is parabolic.
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9. Describe in words how the solution of elliptic, parabolic and hyperbolic
equations behave, i.e. what physical processes are described by such equa-
tions. Discuss which of the types allow wave-like solutions.

10. Derive the difference formula and the corresponding leading error term
for the second derivative using a central three-point scheme. What is the
order of that scheme?

11. Consider the integration of an ordinary differential equation u′ = λu.

a) Write down the explicit and implicit first-order Euler discretisation.
Discuss briefly the main difference between the two methods, and
comment on advantages and disadvantages.

b) Derive the region of absolute stability for the explicit Euler scheme.
Sketch the solution in the complex plane z = λ∆t. Is the scheme
absolutely stable?

c) Set λ = −1. Which integration scheme(s) would you use and what
is the maximum possible time step? Motivate your answer.

d) Compared to the implicit scheme, does the explicit scheme give less
accurate results, i.e. what is the order of the two schemes?

12. Derive the region of absolute stability for the implicit Euler scheme using
the test equation u′ = λu. Sketch the solution in the complex plane
z = λ∆t. Is the scheme absolutely stable?

13. You want to solve the ordinary differential equation u′ = λu with λ =
3
√
−1. Which integration scheme(s) would you use? Motivate your an-

swer.

14. Consider the advection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2
.

Discretise this equation in space using central schemes and in time using
the explicit first-order Euler scheme.

a) Write down the discretised equation. Use as abbreviations σ =
a∆t/∆x and β = ν∆t/∆x2.

b) Perform a von-Neumann stability analysis using the Fourier modes
ûξe

iξx. In particular, compute the amplification factor Ĝ(ξ∆x). A
condition for stability depending on β alone can then be derived
by setting ξ∆x = π. Another condition relating σ and β can be
found close to ξ∆x = 0 using the expansions sin ξ∆x ≈ ξ∆x and
cos ξ∆x− 1 ≈ −1

2(ξ∆x)2. Neglect terms of order (ξ∆x)4 and above.
What are then the conditions for stability in terms of σ and β?

c) Can you derive an explicit condition for the maximum time step?
Does it depend on the spatial grid spacing ∆x?
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15. Consider the diffusion equation,

∂u

∂t
= ν

∂2u

∂x2
.

Discretise this equation in space using central schemes and in time using
the explicit first-order Euler scheme.

a) Write down the discretised equation. Use as abbreviation β = ν∆t/∆x2.

b) Perform a von-Neumann stability analysis using the Fourier modes
ûξe

iξx. In particular, compute the amplification factor Ĝ(ξ∆x). De-
rive a condition for stability as a function of β and the discretisation
parameters ∆t and ∆x.

c) What is the main difference of this stability condition compared to
the CFL condition of the advection equation? What possibilities do
you see to improve the stability of the viscous term?

d) Instead of an explicit Euler scheme, derive the stability limit for the
implicit Euler scheme of first order. To this end, perform a von-
Neumann analysis and compute the amplification factor Ĝ(ξ∆x).
What is the condition on stability for this scheme?

d) Consider now a two-dimensional grid with directions x and y. Re-
derive the stability condition for the explicit scheme, assuming ∆x =
∆y. How does the result differ from part b)?

16. On the example of the flow around an airplane wing, discuss – as a func-
tion of the angle of attack – the regions in which viscosity is important
and regions which can be treated inviscidly. Which equations would you
use in the different regions of the flow?

17. Write down the compressible Euler equations in conservative form. Briefly
discuss the physical meaning of the individual terms, and the physical
concept that leads to the formulation of the equations. Write down the
system in such a way that it is completely closed, i.e. the same number
of equations as the number of unknowns. Of what type are the unsteady
Euler equations (no derivation needed)? What are the conservative vari-
ables? What are the primitive variables?

18. Define and use the Rankine-Hugoniot jump condition to compute the
shock speed for the following problem

ut + uux = 0 −∞ < x < ∞, t > 0

u(x, 0) =

{
1 x ≤ 0

0 otherwise .

How would the solution look like if the initial condition is reversed, i.e.

u(x, 0) =

{
1 x ≥ 0

0 otherwise .
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19. Define the entropy condition for a scalar conservation law.

ut + f(u)x = 0 −∞ < x < ∞, t > 0

with a convex flux function f(u). The shock is moving with speed s and
the state to the left is given by uL and the state to the right by uR.

In what case do we need an entropy condition (expansion fan, shock)?

20. Investigate the one-sided difference scheme

un+1
j = unj − a

∆t

∆x
(unj − unj−1)

for the advection equation

ut + aux = 0 .

Consider the cases a > 0 and a < 0.

a) Prove that the scheme is consistent and find the order of accuracy.
Assume ∆t/∆x constant.

b) Determine the stability requirement for a > 0 and show that it is
unstable for a < 0.

21. Apply the Lax-Friedrichs scheme to the advection equation

ut + aux = 0

that is,

un+1
j =

1

2
(unj−1 + unj+1)−

a∆t

2∆x
(unj+1 − unj−1)

a) Write down the modified differential equation.

b) What type of equations is this?

c) What kind of behaviour can we expect from the solution?

22. Sketch the effect of diffusive and dispersive errors on the advection of
a top-hat (a signal with discontinuity) signal. What terms are known to
cause such errors? If you consider the advection of a pure sine wave, what
are the effects of diffusive and dispersive errors?

23. The three-point centred scheme applied to

ut + aux = 0, a > 0

yields the approximation

un+1
j = unj − a∆t

2∆x
(unj+1 − unj−1)

Show that this approximation is not stable even though the CFL condition
is fulfilled.
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24. What does the Lax(–Richtmyer) equivalence theorem state?

25. What is the condition on the n× n real matrix A(u) for the system

ut +Aux = 0

to be hyperbolic?

26. The barotropic gas dynamic equations

ρt + ρux = 0 (1)

ut + uux +
1

ρ
px = 0

where
p = p(ρ) = Cργ

and C a constant, can be linearised by considering small perturbations
(ρ′, u′) around a motionless gas.

a) Let ρ = ρ0 + ρ′ and u = u0 + u′ where u0 = 0. Linearise the system
(??) and show that this yields the following linear system (the primes
have been dropped)

ρt + ρ0ux = 0

ut +
a2

ρ0
ρx = 0 (2)

where a is the speed of sound. a and ρ0 are constants.

b) Is the system given by (??) a hyperbolic system? Motivate your
answer.

c) Determine the characteristic variables in terms of ρ and u.

d) Determine the partial differential equations that are fulfilled by the
characteristic variables, i.e. the characteristic formulation.

e) Let −∞ < x < ∞ (no boundaries) and the initial conditions at t = 0
are

ρ(0, x) = sin(x) u(0, x) = 0 .

Determine the analytical solution of equation (??) for t > 0. Hint:
Start from the characteristic formulation.

27. The linearised form of the barotropic gas dynamics equations (??) is given
by (

ρ
u

)
t

+

(
0 ρ0

c2/ρ0 0

)
︸ ︷︷ ︸

A

(
ρ
u

)
x

= 0, (3)

where c is the speed of sound. c and ρ0 are constants.

a) Draw the domain of dependence of the solution to the system (??)
in a point P in the x-t plane.
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b) The system is solved numerically on a grid given by xj = j∆x, j =
0, 1, 2... and tn = n∆t, n = 0, 1, 2, ..... using an explicit three-point
scheme, see the figure below.

Draw the domain of dependence of the numerical solution at P (in
the same figure as a)) of the three-point scheme in the case when

i) the CFL condition is fulfilled

ii) the CFL condition is NOT fulfilled.

Assume that P is a grid point.

28. Consider the Euler equations in 1D

ρt + ρux + uρx = 0

ut + uux +
1

ρ
px = 0

pt + ρc2ux + upx = 0 .

How many boundary conditions must be added at the

inflow boundary when the flow is

a) Supersonic

b) Subsonic

outflow boundary when the flow is

c) Supersonic

d) Subsonic

Motivate your answer!

29. Consider the shock tube problem described by the isentropic Euler equa-
tions in one space dimension:(

ρ
ρu

)
t

+

(
ρu

ρu2 + p

)
x

= 0 . (4)

At t = 0 a membrane is separating a region with a high-pressure gas from
a region with gas at a lower pressure.



Computational Fluid Dynamics SG2212, Mechanics 7

a) Describe how the solution is evolving as a function of time once the
membrane is removed.

b) What type of discontinuity is excluded when solving equation (??)
instead of the full Euler equations, and why?

30. Give at least one reason for using artificial viscosity when solving a con-
servation law using the MacCormack scheme. Why does one not use any
artificial viscosity in an upwind discretisation?

31. During the lecture, we have encountered various names for the variables
appearing in conservation laws. Give an explanation what primitive/quasi-
linear, conservative and characteristic variables/formulations are. You
can show your finding on the example of a 2× 2 system.

32. Projection on a divergence-free space.

a) Show that a vector field wi can be decomposed into

wi = ui +
∂p

∂xi

where u is divergence free and parallel to the boundary.

b) Apply this to the Navier–Stokes equations, show that the pressure
term disappears and recover an equation for the pressure from the
gradient part.

33. From the differential form of the Navier–Stokes equations obtain the
Navier–Stokes equations in integral form used in finite-volume discreti-
sations.

34. Finite volume (FV) discretisation.

(a) Derive the finite volume (FV) discretisation of the continuity equa-
tion (∂ui/∂xi = 0) on an arbitrary grid,

(b) derive the FV discretisation for the Laplace equation on an arbitrary
grid,

(c) show that both are equivalent to a central difference approximation
for Cartesian grids.

35. State the difficulties associated with the finite-volume discretisations of
the Navier–Stokes equations on a collocated grid and show the form of
the spurious solution which exist.

36. Staggered grid.

(a) Define an appropriate staggered grid that can be used for the dis-
cretisation of the Navier–Stokes equations,

(b) Write down the FV discretisation of the Navier–Stokes equations on
a staggered Cartesian grid,
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(c) Discuss how to treat no-slip and inflow/outflow boundary conditions.

37. Describe the artificial-compressibility method for solving the Navier–Stokes
equations for a steady incompressible flow.

38. Time dependent flows.

(a) Define a simple projection method for the time dependent incom-
pressible Navier–Stokes equations

d

dt

(
u
0

)
+

(
N(u) G
D 0

)(
u
p

)
=

(
f
0

)
(b) Show in detail the equation for the pressure to be solved in each time

step and discuss the boundary conditions for the pressure.

39. Time step restriction for Navier–Stokes solutions.

(a) Motivate the use of an appropriate form of the advection-diffusion
equation as a model equation for stability analysis,

(b) Identify the various terms that appear in the advection-diffusion
equation, and given them a physical meaning,

(c) Derive time step limitations for the two main parts of that equation
separately. Which of the limits is most dangerous for low Reynolds
number (i.e. high viscosity), and which one for high Reynolds num-
ber?

(d) How would one proceed when calculating the combined stability limit
using both contributions at the same time?

(e) State the 2D equivalent of that restriction.

40. Consider the project for this course: We were developing a MATLAB code
for solving the incompressible Navier–Stokes equations using second-order
finite differences on a staggered grid using first order time integration.
List at least 5 points of possible improvements for this code in the order
of importance (according to your opinion), and motivate why a better
method for these aspects is appropriate.

41. Consider one-dimensional derivative matrices D
1
and D

2
for the first and

second derivative of a vector u based on central differences. Write down
the complete matrices for the case of u and f having a length of 5. Include
homogeneous Dirichlet conditions on the inlet boundary and homogeneous
Neumann conditions on the outlet boundary (if needed). In short, derive
the derivative matrices such that the following systems can be solved

du

dx
= f and

d2u

dx2
= f

for u given f and using the mentioned boundary conditions.

42. Iterative techniques for linear systems.
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(a) Consider the algebraic equation system LU = b. To define a general
iterative method write L = P+A. Which properties should matrices
A and P have to insure convergence of the iterative method?

(b) Which choices of P and A correspond to Jacobi respective Gauss–
Seidel methods?

(c) Define Gauss–Seidel iterations for the Laplace equation, give the
convergence rate and derive an approximation for the number of
iterations required for error reduction of O(h2).

(d) Describe the idea behind multigrid methods.

(e) Define the 2-level multigrid method for the Laplace equation.

43. Coordinate transformation.

(a) Define the coordinate transformation from a Cartesian one (x, y, z) to
a general one (ξ, η, ζ). State the Jacobian matrix of transformation
and describe a practical way of computing it.

(b) Derive the transformation of the 2D Navier–Stokes equations

from
∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0 to

∂U′

∂t
+

∂F′

∂ξ
+

∂G

∂η
= 0,

and give the vectors U′,F′ and G′ in terms of U,F and G.

44. Compact finite-difference scheme. Consider the general approximation of
type

β(f ′
i+2 + f ′

i−2) + α(f ′
i+1 + f ′

i−1) + f ′
i =

c

6h
(fi+3 − fi−3) +

b

4h
(fi+2 − fi−2) +

a

2h
(fi+1 − fi−1),

(a) and derive the equations
which should be satisfied to
get different order of accu-
racy for discretisation of first
derivative f ′

i .

(b) By Fourier analysis of the dif-
ferencing error of the scheme
above derive an expression for
the modified wavenumber.

(c) What do the curves in the fig-
ure tell us?
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45. Unstructured node-centred finite volume.

(a) Define the dual grid.
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(b) Present a finite-volume approxima-
tion of ut = uxx+uyy. Examine the
consistency of the scheme and give
the order of the accuracy (use the
grid given here).

3
1

45

6

7
2

h

h

(c) Show that the ux at node c can be approximated by the following
finite-volume approximation and proof that its accuracy isO(h) (first
order),

(ux)c ≈
1

Vc

∑
i

uc + ui
2

δyi.

(Vc is the volume of the dual grid)
C

1
2

3

4

5

46. Upwind discretisation

(a) Consider equation ut + aux = 0, where a is the convective veloc-
ity. Give a first-order accurate upwind discretisation of his equation
which is stable independent of the sign of a.

(b) Define a flux splitting scheme for discretisation of one-dimensional
Euler equations

∂U

∂t
+

∂E

∂x
= 0, U =

 ρ
ρu
Et

 , E =

 ρu
ρu2

(Et + p)u

 .


