## KTH

EL2520
Controll Theory and Practice

Lecture 2: The closed-loop system

Mikael Johansson
School of Electrical Engineering
KTH, Stockholm, Sweden

EL2520 Control Theory and Practice
Mikeel Johansson mikeajieee.kt.se

## Contents

1. The closed-loop system
2. The control problem - and six central transfer functions
3. The sensitivity function and disturbance rejection
4. The complementary sensitivity and robust stability
5. The closed-loop transfer function and reference following

## Goals

After this lecture, you should:

- Know that the closed-loop is characterized by 6 transfer functions
- Dangerous to design for only one
- Cancellations and the concept of internal stability
- Determine, analyze and design desired sensitivity functions
- Sensitivity function for disturbance rejection
- Complementary sensitivity function for robust stability
- Understand limitations and conflicts, relation to stability margins

Material: course book Chapter 6.

EL2520 Control Theory and Practice
Mikael Johansson mikeelj@ee.kh.se


## The design problem

Design problem: find a controller that
a) Reduces the effect of load disturbances
b) Does not inject too much measurement noise into the system
c) Makes the closed loop insensitive to process variations
d) Makes the output follow command signals

Often convenient with two-degree of freedom controller
(separate transmission from $\mathrm{y} \rightarrow \mathrm{u}$ and from $\mathrm{r} \rightarrow \mathrm{u}$ )
Use feedback to deal with a,b,c; use feedforward to deal with d.

EL2520 Control Theory and Practice
Mikeel Johansson mikeajiee..kth.se


$$
u=S F_{r} r-S F_{y}(w+n)+S w_{u}
$$

Closed-loop for SISO G(s) characterized by six transfer functions EL2520 Control Theory and Practice Mikell Johansson mikeelj@ee.th.se

## Transfer functions and observations

$$
\begin{aligned}
S & =\frac{1}{1+G F_{y}} & \left(w \rightarrow z, w_{u} \rightarrow u\right) & \text { sensitivity function } \\
T & =\frac{G F_{y}}{1+G F_{y}} & (n \rightarrow z) & \text { complementary sensitivity } \\
G_{c} & =\frac{G F_{r}}{1+G F_{y}} & (r \rightarrow z) & \text { closed loop system } \\
S G & =\frac{G}{1+G F_{y}} & \left(w_{u} \rightarrow z\right) & \\
S F_{y} & =\frac{F_{y}}{1+G F_{y}} & (n \rightarrow u) & \\
S F_{r} & =\frac{F_{r}}{1+G F_{y}} & (r \rightarrow u) &
\end{aligned}
$$

Observation: need to look at all! Many tradeoffs (e.g. S+T=1)
ELL520 Control Theory and Practic

## A warning!

Individual time responses may look good

but you need to verify that all transfer functions are as desired

> but you need to verify that all transter functions are as desired
Mikeel Johansson mikeeljeee.kth.se


## What's going on?

Process: $\quad G=\frac{1}{s-1}$
Controller: $F_{y}=F_{r}=\frac{s-1}{s}$
Transfer functions:

$$
\begin{array}{rlrl}
T & =\frac{1 / s}{1+1 / s}=\frac{1}{s+1} & & \text { (stable) } \\
S G & =\frac{s}{(s+1)(s-1)} & & \text { (unstable!) } \\
S F_{y} & =\frac{(s-1)}{(s+1)} & & \text { (stable) } \\
S & =\frac{s}{(s+1)} & & \text { (stable) } \\
& & \text { Mikael Johansson mikeeljeee..kt.se }
\end{array}
$$

## Sensitivity functions

Sensitivity and complementary sensitivity are particularly important:

- S determines suppression of load disturbances,
- T determines robustness to noise and unmodelled dynamics

Both connected to classical stability margins (gain, phase margin)

First trade-off: S+T=1 - can't make both zero at the same time.
Definition. The closed loop system above is internally stable if it is input-output stable from $r, w_{u}, w, n$ to all outputs $u, z, y$.

Theorem. If G is SISO, the closed-loop system is internally stable stable if and only if $S, S G, S F_{y}, F_{r}$ are stable

ELL2520 Control Theory and Practice
Mikeel Johansson mikealioee.kth.se

EL2520 Control Theory and Practice
Mikeel Johansson mikaejieee..kt.se

## Disturbance rejection

The transfer function from $w$ to $z$ in open loop is

$$
G_{w \rightarrow z}^{\mathrm{ol}}=1
$$

while the closed-loop counter-part is

$$
G_{w \rightarrow z}^{\mathrm{cl}}=\frac{1}{1+G F_{y}}
$$

Thus

$$
\frac{G_{w \rightarrow z}^{\mathrm{cl}}}{G_{w \rightarrow z}^{\mathrm{ol}}}=\frac{1}{1+G F_{y}}
$$

S quantifies the disturbance attenuation due to closed-loop control. Disturbances at frequencies with $S(i \omega) \geq 1$ amplified by feedback!

## Nyquist curve interpretation

$|S(i \omega)|=|L(i \omega)+1|^{-1}$ is inverse distance from Nyquist curve to -1
Disturbance attenuation at frequencies where Nyquist curve is inside unit circle centered at the -1 point.


## Sensitivity to uncertainties

Sensitivity of what, and to what?

- Sensitivity of closed-loop transfer function to model uncertainties

The response of $z$ to $r$ (assuming no disturbances) is

$$
z=G_{\mathrm{Cl}} r=\frac{G F_{r}}{1+G F_{y}} r
$$

If there is a model error, so that the true system is

$$
\widetilde{G}=\left(1+\Delta_{G}\right) G
$$

then the true response to $r$ is

$$
\tilde{z}=\left(1+\tilde{S} \Delta_{G}\right) z
$$

EL2520 Control Theory and Practice
Mikeel Johansson mikeefjee..kth.se

## Robust stability

Uncertainties also affect stability of closed-loop system.
Assume true system is given by $\widetilde{G}=\left(1+\Delta_{G}\right) G$


What linear $\Delta_{G}$ can be tolerated without jeopardizing stability? ELL2520 Control Theory and Practice Mikael Johansson mikeejjeee.kt.se

Robust stability via small gain theorem


Assume $\Delta_{G}$ stable and nominal-system T internally stable. If $\left\|T \Delta_{G}\right\|_{\infty} \leq 1$
then the above system (and, hence, the original system) is input-output stable.

Proof. Small-gain theorem
EL2520 Control Theory and Pratice
Mikeel Johansson mikaelieee..kh.se

## Sensitivity shaping

Natural design criterion: make sure that both the sensitivity S and the complementary sensitivity T avoid "forbidden areas"


EL2520 Control Theory and Practice
Mikael Johansson mikeejeee..kth.se

## Closed loop transfer function and tracking

Reference following determined by closed-loop transfer function


Design criterion: choose $F_{\mathrm{r}}$ so that $\mathrm{M}_{\mathrm{p}}$ and $\omega_{B}$ equal desired values Note: potential conflict with S, control signal limitations

EL2520 Control Theory and Pratice
Mikeel Johansson mikeeji@ee..kt.se

## Steady-state errors

Step in reference signal

$$
e_{0}=\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s\left(1-G_{c}(s)\right) \frac{1}{s}
$$

$$
\text { If } \mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{y}} \text {, then } 1-G_{c}(s)=S(s) \text { and } e_{0}=0 \text { requires } S(0)=0
$$

True if $\lim _{\omega \rightarrow 0} G(\omega) F_{y}(\omega)=\infty$, i.e. if integrator in $\mathrm{F}_{y}$ or G
Tracking a ramp signal requires two integrators, etc.
Perfect suppression of disturbances treated analogously

EL2520 Control Theory and Practice
Mikael Johansson mikeejliee..kt.se

## Summary

- Closed-loop system characterized by 6 transfer functions - Need to consider all!
- Sensitivity and complementary especially important
- S: disturbance attenuation, "performance sensitivity"
- T: noise attenuation, robust stability
- Close relationship with classical stability margins
- Control system design via "sensitivity shaping"
- Conflicts and limitations
- $\mathrm{S}+\mathrm{T}=1$
- $|S(i \omega)| \geq 1$ for some $\omega$ (disturbance amplification!)
- Much more next lecture!

EL2520 Control Theory and Practice
Mikael Johansson mikeeji@ee..kt.se

