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How is our society connected?

e Structure of our social networks

— Most people's friends are located in their vicinity, be it
colleagues, neighbours, or team mates in the local soccer
club.

e Social networks were expected to be “grid-like”

— Within a specific social dimension (e.g., profession, hobby,
geographical distribution)




Milgram’s (Small-World) experiment

* Finding short chains of acquaintances
linking pairs of people in USA who
didn’t know each other;

— Source person in Nebraska and Kansas;
— Target person in Massachusetts.

— The letter could be only be given to
persons one knows on a first name basis
(acquaintances).




Milgram’s (Small-World) experiment

Average length of the chains that were completed
lied between 5 and 6 steps;
Coined as “Six degrees of separation” principle.

This was far less than assumed under the 'grid-like'
assumption |

— Similar results have been found in many other social
networks

BIG QUESTIONS:

— Why are there short chains of acquaintances
linking together arbitrary pairs of strangers?

— That is, why is the diameter of the graph low?




Random Graphs

* Previously believed to be a Random graph

* Arandom graph is a graph that is generated by
some random process.

 When pairs or vertices are joined uniformly at random ->
then any two vertices are connected by a short chain with
high probability.

* However..

* If Aand B have a common friend C it is likely that they
themselves will be friends! (clustering)

e Random networks tend not to be clustered



Graphs

A graph G formally consists of a set of vertices V and a set of
edges E between them. That is, G=(V,E).

An edge e,, connects vertex a with vertex b.

— Edges can be directed or undirected.

The neighbourhood N of a vertex a is defined as the set of its
immediately connected vertices.

The degree of a vertex is defined as the number of vertexes in
its neighbourhood.

Distance between two vertices is the number of edges in the
shortest path connecting the vertices.

The diameter of a graph is maximum distance for any vertex.



Example Unidirected Graph




Regular Graph

* Aregulargraphisa
Graph where each
vertex has the same
number of neighbors

— In other words, nodes
have the same degree

* Regular graphs can
also be random

— Random regular graph

{ )

2-regular graph

3-regular graph



Informally Clustering in Graphs

* High clustering => a given vertex’s neighbours
have lots of connections to each other

* Low clustering => a given vertex’s neighbours
have few connections to each other



Clustering coefficient
O

* The local clustering coefficient C(v) of vertexV is a
measure of how close Vv ‘s neighbours are to being a
clique (a fully connected graph): c
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Clustering

Clustering measures the fraction of neighbours of a
node that are connected among themselves

Regular Graphs have a high clustering coefficient
— but also a high diameter

Random Graphs have a low clustering coefficient
— but a low diameter

Both models do match some properties expected
from real networks - such as Milgram’s!



Random vs. regular graphs

Regular Random

* Long paths e Short path length
— L~N/(2k) — L~logkN
* Highly clustered e Almost no clustering

— C~3/4 — C~k/N



Small-World networks

 Random rewiring procedure of regular graph (by
Watts and Strogatz)
* With probability p rewire each link in a regular graph:

— Exhibit properties of both: random and regular graphs:
* High clustering coefficient;
* Low diameter.

Regular Small-world

Increasing randomness



Small-World: remaining questions

* This is still not enough to explain Milgram’s
experiment:

— |If there exists a shortest path between any two
nodes - where is the global knowledge that we can

use to find this shortest path?

e \Why should arbitrary pairs of strangers be able to
find short chains of acquaintances that link them
together?

e Why do decentralized “search algorithms” work?



Implications for P2P systems.

 Each P2P system can be
interpreted as a directed graph
where peers correspond to the
nodes and their routing table
entries as directed edges
(links) to the other nodes




Implications for P2P systems.

e Task for P2P:

— Invent a decentralized search
algorithm that would route
message from any node A to any
other node B with relatively few
hops compared with the size of
the graph

* Is it possible?
— Milgram’s experiment
suggests YES!




Why did Milgram’s experiment work?

John,

Stockholm;
@ Neighbor;
Musician;

Likes photography;

* Asocial network is not a
simple graph, but a graph with
Bill ‘

certain “labels”

— “labels” representing various Etc.
dimensions of our life !

* We internalize a “labeling Siman,

space” with a distance metric! Ffiz-:d_

Stamp collector;
Loves climbing;

* We can greedily minimize the
distance!

Etc.
— Decentralized search: a greedy-
routing algorithm et
. . eter,
— We need to build the right Stockholm:
graph where a decentralized Colleague,;

search algorithm might

perform the best Computer scientist;

Loves movies;
Etc.



Kleinberg’s model of Small-Worlds

* Research of Jon Kleinberg:

— Claim that there is no decentralized algorithm
capable performing effective search in the class of
SW networks according to Watts and Strogatz model;

— J. Kleinberg presented the infinite family of Small
World networks that generalizes Watts and Strogatz
model and shows that decentralized search

algorithms can find short paths with high probability;

— It was proven that there exists only one unique

model within that family for which decentralized
search algorithms are effective.



Navigable Small-World networks

Kleinberg’s Small-World’s model
2-dimensional lattice
Lattice (Manhattan) distance
Two type of edges:

Lattice edges (short range)

Long range

Probability for a node u to have
a node v as a long range contact
is proportional to

1
d(u,v)’

P(u—>v)~




Each peer u has an edge to the peer v with probability

Influence of “r”
1

where

d(u,v) is the manhattan distance between u and v. d(u,v)

Tuning “r

«“ ”

When r<dim (dimension of the euclidean space) we tend to choose
more far away neighbours (search algorithm quickly approaches the
target area, but slows down till it finally reaches the target).

When r>dim we tend to choose closer neighbours (search algorithm
reaches the target area slowly if it is far away, but finds the target
quickly in it’s neighbourhood).

When r=0 — long range contacts are chosen uniformly. Random graph
theory proves there exists short paths between every pair of vertices,
but there is no search algorithm capable of finding these paths.

When r=dim, the algorithm exhibits optimal performance.



Performance with r=dim

* When g =1 (there is one long range link)
— The expected search cost is bounded by O(log? N)

* When g =k (there are a constant number of
long range links)
— The expected search cost is bounded by
O(log? N)/k
* Whenqg=IlogN
— The expected search cost is bounded by O(log N)



How does it work in practice?
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Example

 Choose among 3 friends (1-dimension)
— A (1 mile away)
— B (2 miles away)

— C (3 miles away) Z 1 1+1+1 11
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1-dimensional continuous case

e Peers uniformly distributed on a unit interval (or a
ring structure)

* Long range links chosen with the probability P~1/d

e Search cost

O(log2N/k) with k long-range
links

O(logN) with O(logN) long-
range links

Systems:

Symphony (Manku et al, USITS
2003)

Accordion (Li et al, NSDI 2005) O




Small-World based P2P Overlay

Systems:
0.02 Symphony (Manku et al, USITS 2003)
0.87 0.13 Accordion (Li et al, NSDI 2005)

* Peers mapped onto positions on the ring
— Uniform hash function (e.g., SHA-1) for peerld
— Establish successor and predecessor ring links

* Small-World connectivity establishment

0.61 1 H
0.55 XINN ||

* No restrictions on peer-degree
* Implicit load balancing

0.26
0.72




Approximation of Kleinberg’s model

* Given node v if we can partition the remaining peers into sets A;, A, A, ..., Ajpon s
where A, consists of all nodes whose distance from u is between 27 and 2-*1.

» Then given r=dim each long range contact of u is nearly equally likely to belong to
any of the sets A,

* When g=logN — on average each node will have a link in each set of A;




Traditional DHTs and Kleinberg model

 Most of the structured P2P systems are similar to Kleinberg’s model and
are called logarithmic-like approaches. E.g.

— Chord (randomized version) g=logN, r=1
— Gnutella g=5, r=0

Randomized
Chord's
model

Kleinberg's
model




Similarity to other P2P construction

techniques

e Many existing P2P are just the “special
cases” of Kleinberg’s navigable Small-
World

- Ring based
- Tree based
— Hybercube |
— Torus
- Etc,,

i
1] 0.2 0.4 0.6 0.8 1
Identifier Space

e Kleinberg’s Small-World
— Randomized construction
— No restrictions on peer-degree
— “choice-of-two” possibility
— Effective nonGreedy routing

A

W
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What to take away from the small-world tour?

How can we characterize P2P overlay networks such that
we can study them using graph-theoretic approaches?

What is the main difference between a random graph
and a SW graph?

What is the main difference between Watts/Strogatz
and Kleinberg models?

What is the relationship between structured overlay
networks and small world graphs?

What are possible variations of the small world graph
model?

How does it relate to our social networks?




Non-Uniform
Structured Overlays



Structured overlay

* Build a routing table

— Each peer has a well-defined neighbourhood and
information about its immediate neighbours (in contrast to
unstructured topologies)

* The search operation is performed efficiently (in
contrast to unstructured)



Data on a Ring-Structured Overlay

Peers mapped onto an ID the ring identifier
space
— Uniform hash function (e.g., SHA-1)

Resources mapped on to an ID the ring
identifier space

— Uniform hash function

Peers are responsible for a range of the
ring identifier space

Connectivity establishment

E.g., Symphony [Manku et al. 2003]

Uniform peer key (id) distribution
— Implicit load balancing



Problems with range queries

* Point queries
— E.g. “ABBA Waterloo”
— “ABBA Mamma Mia”
* Range queries:
— What about all the files with prefix “ABBA..”?
— uniform hashing assigns all the files to random locations on the
ring
— Uniform distribution of IDs (keys)
— Inefficient lookup!

* Order preserving (Lexicographic) hashing

— If a> b then id(a)>id(b) (in uniform hashing id(a)=rand;
id(b)=rand)

— Non-uniform distribution (depends on the data)!



Problems with uniform key
distributions

* Order preserving hash functions (e.g. Lexicographical
ordering)

* Peer clustering in key space
Etc.

* For skewed key distributions
— How do we make SW long range links?



Extending Kleinberg’s model

A d'(U'y V') = j f (x)dx
e I
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III

Extension of the “uniform mode
nonuniform case (1)

)
R Space with
uniform
distribution P[veLE,) « (d'(u, v))_ 1
function

R Space with v -1
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Small-World P2P in non-uniform spaces

* f(x)— probability density function of the peer keys.

* Long range neighbours are chosen inversely
proportional to the integral of f(x) between the two
nodes

Expected routing cost in such a network using greedy routing is
O(log N) when the network degree is O(log N).



Acquiring Peer Key Distribution

Problem:
— Need to acquire the global key distribution function locally.
r A d'(u'y v’y )= j f(x)dx
Uniform sampling R
(Mercury [Bharambe et al.,2004])
2 S U R A A
— log*N samples A \ I
— Cannot cope with \ /
T | /
|
complex distributions! ® R
d(uid’vid)

Non-uniform (Scalable Sampling)
— OSCAR (Overlays using SCAlable sampling of Realistic distributions)
— [DBISP2P06, ICDEO7, TAAS10]



Sampling by random walks

e Bharambe et al. 2004

“Mercury: supporting
scalable multi-attribute

range queries”

* Sampling by random walks

— A random walk with TTL at
least logN ends up in a
uniform random node (on
expander graphs)




Sampling in Mercury

d'(u'y Vi) = [ (R

— Every node periodically i
issues k1 samples

* The sampled nodes return its N L
ID and their own collected T N
samples (k2) b /

* Itis suggested k1=logN o
— Qver time the ID distributio~

histogram is built.

2000 -

1500 -

— Real world distributions are
far more complex! L

1.

O L r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Oscar: Modifying Kleinberg’s method

* Choosing long-range link: 0.2
1) u.a.r. choose a partition o8
2) u.a.r. choose a peer within -
that partition

* |t can be proven that search
cost remains O(log?N)

O(logN) with O(logN) degree

0.2 04 0.6 0.8 1
Identifier Space



Oscar: Dealing with Skewed Spaces

* Find the boundaries between partitions!
* Uniform sampling by random walks.
* k samples for each boundary.



Oscar: an Example

e O(k*log N) samples is needed to construct a routing efficient
network.

e Does not depend on the complexity of the distribution

e “The view” can be copied from a ring-neighbour
(by contacting median peers and requesting their ring-neighbour ids)



Recap of non-uniform structured overlays

What is the relationship between the resource placement and the network
structure in structured P2P overlays?

What is a challenge for enabling range queries for structured overlays?

What is the main difference between a regular Kleinberg’s model Small-
World model for non-uniform id spaces?

How does random sampling work?
What are the possible solutions to solve the non-uniform resource

placement problem?
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