
Navigable Small-World Networks 

Based on slides by Šarūnas Girdzijauskas 



Outline 

• Small-Worlds vs. Random Graphs 

• Navigation in Small-Worlds (Kleinberg’s 
model) 

• Small-World based Structured Overlays 

• Non-uniform Structured Overlays 

 



How is our society connected? 

• Structure of our social networks 

– Most people's friends are located in their vicinity, be it 
colleagues, neighbours, or team mates in the local soccer 
club. 

• Social networks were expected to be “grid-like“ 

– Within a specific social dimension (e.g., profession, hobby, 
geographical distribution) 

 

 
Implies the diameter of  

the social network is 

roughly O(√N). 



Milgram’s (Small-World) experiment 

• Finding short chains of acquaintances 
linking pairs of people in USA who 
didn’t know each other; 

– Source person in Nebraska and Kansas; 

– Target person in Massachusetts. 

– The letter could be only be given to 
persons one knows on a first name basis 
(acquaintances). 

 



Milgram’s (Small-World) experiment 

• Average length of the chains that were completed 
lied between 5 and 6 steps; 

• Coined as “Six degrees of separation” principle. 

• This was far less than assumed under the 'grid-like' 
assumption ! 
– Similar results have been found in many other social 

networks 

 

• BIG QUESTIONS: 

– Why are there short chains of acquaintances 
linking together arbitrary pairs of strangers? 

– That is, why is the diameter of the graph low? 

 



Random Graphs 

• Previously believed to be a Random graph 
• A random graph is a graph that is generated by 

some random process.  

• When pairs or vertices are joined uniformly at random -> 
then any two vertices are connected by a short chain with 
high probability. 

 

• However.. 
• If A and B have a common friend C it is likely that they 

themselves will be friends! (clustering) 
• Random networks tend not to be clustered 



Graphs 

• A graph  G formally consists of a set of vertices V  and a set of 
edges E between them. That is, G=(V,E). 

• An edge        connects vertex a with vertex b. 
– Edges can be directed or undirected. 

• The neighbourhood N of a vertex a is defined as the set of its 
immediately connected vertices. 

• The degree of a vertex is defined as the number of vertexes in 
its neighbourhood. 

• Distance between two vertices is the number of edges in the 
shortest path connecting the vertices. 

• The diameter of a graph is maximum distance for any vertex. 
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Example Unidirected Graph 
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Regular Graph 

• A regular graph is a  
Graph where each 
vertex has the same 
number of neighbors 

– In other words, nodes 
have the same degree 

• Regular graphs can 
also be random 

– Random regular graph 

2-regular graph 

3-regular graph 



Informally Clustering in Graphs 

• High clustering => a given vertex’s neighbours 
have lots of connections to each other 

 

• Low clustering => a given vertex’s neighbours 
have few connections to each other 

 



Clustering coefficient 

• The local clustering coefficient  C(v) of vertex v is a 
measure of how close v ‘s neighbours are to being a 
clique (a fully connected graph): 

 

     

 

 where e(v) denotes the number of edges  between the 
vertices in the v’s neighbourhood. 

 

• Network average clustering coefficient      is given by 
the fraction of: 
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Clustering 

• Clustering measures the fraction of neighbours of a 
node that are connected among themselves 

• Regular Graphs have a high clustering coefficient 

– but also a high diameter 

• Random Graphs have a low clustering coefficient 

– but a low diameter 

• Both models do match some properties expected 
from real networks - such as Milgram’s! 

 



Random vs. regular graphs 

• Long paths  
– L~N/(2k)  

• Highly clustered  
– C~3/4 

 

• Short path length  
– L~logkN 

• Almost no clustering 
– C~k/N 



Small-World networks 
• Random rewiring procedure of regular graph (by 

Watts and Strogatz)  

• With probability p rewire each link in a regular graph:  
– Exhibit properties of both: random and regular graphs: 

• High clustering coefficient; 

• Low diameter. 



Small-World: remaining questions 

• This is still not enough to explain Milgram’s 
experiment: 
– If there exists a shortest path between any two 

nodes - where is the global knowledge that we can 
use to find this shortest path? 

• Why should arbitrary pairs of strangers be able to 
find short chains of acquaintances that link them 
together? 

• Why do decentralized “search algorithms” work? 



Implications for P2P systems 

• Each P2P system can be 
interpreted as a directed graph 
where peers correspond to the 
nodes and their routing table 
entries as directed edges 
(links) to the other nodes 

 

 



Implications for P2P systems 

• Task for P2P: 
– Invent a decentralized  search 

algorithm that would route 
message from any node A to any 
other node B with relatively few 
hops compared with the size of 
the graph 

 
 

• Is it possible?  
– Milgram’s experiment 

suggests YES!  
 

 



Why did Milgram’s experiment work? 

• A social network is not a 
simple graph, but a graph with 
certain “labels” 
– “labels“ representing various 

dimensions of our life 

• We internalize a “labeling 
space” with a distance metric! 

• We can greedily minimize the 
distance! 
– Decentralized search: a greedy-

routing algorithm 
– We need to build the right 

graph where a decentralized 
search algorithm might 
perform the best 

John, 
Stockholm; 
Neighbor; 
Musician; 
Likes photography; 
Etc. 

Peter, 
Stockholm; 
Colleague; 
Computer scientist; 
Loves movies; 
Etc. 

Simon, 
Paris; 
Friend; 
Stamp collector; 
Loves climbing; 
Etc. 

Bill 



Kleinberg’s model of Small-Worlds 
• Research of Jon Kleinberg: 

– Claim that there is no decentralized algorithm 
capable performing effective search in the class of 
SW networks according to Watts and Strogatz model; 

– J. Kleinberg presented the infinite family of Small 
World networks that generalizes Watts and Strogatz 
model and shows that decentralized search 
algorithms can find short paths with high probability; 

– It was proven that there exists only one unique 
model within that family for which decentralized 
search algorithms are effective. 



Navigable Small-World networks 

• Kleinberg’s Small-World’s model 

• 2-dimensional lattice 

• Lattice (Manhattan) distance 

• Two type of edges: 

• Lattice edges (short range) 

• Long range  
• Probability for a node u to have 

a node v as a long range contact 
is proportional to 
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Influence of “r” 
 

• Each peer u has an edge to the peer v with probability   where 
d(u,v) is the manhattan distance between u and v. 

 

• Tuning “r”  

• When r<dim (dimension of the euclidean space) we tend to choose 
more far away neighbours (search algorithm quickly approaches the 
target area, but slows down till it finally reaches the target). 

• When r>dim we tend to choose closer neighbours (search algorithm 
reaches the target area slowly if it is far away, but finds the target 
quickly in it’s neighbourhood). 

• When r=0 – long range contacts are chosen uniformly. Random graph 
theory proves there exists short paths between every pair of vertices, 
but there is no search algorithm capable of finding these paths. 

• When r=dim, the algorithm exhibits optimal performance. 
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Performance with r=dim 

• When q = 1 (there is one long range link) 

– The expected search cost is bounded by O(log2 N) 

• When q = k (there are a constant number of 
long range links) 

– The expected search cost is bounded by 

      O(log2 N)/k 

• When q = log N 

– The expected search cost is bounded by O(log N) 



How does it work in practice? 

• Normalization constant  has to 
be calculated: 
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Example 
• Choose among 3 friends (1-dimension) 

– A (1 mile away) 
– B (2 miles away) 
– C (3 miles away) 

• Normalization constant  6
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1-dimensional continuous case 

• Peers uniformly distributed on a unit interval (or a 
ring structure) 

• Long range links chosen with the probability P~1/d 

 
• Search cost  
O(log2N/k) with k long-range 

links 

O(logN) with O(logN) long-
range links 

0 1 
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•  Systems:  
•  Symphony (Manku et al, USITS 

2003) 

•  Accordion (Li et al, NSDI 2005) 



Small-World based P2P Overlay 

 Systems:  
 Symphony (Manku et al, USITS 2003) 

 Accordion (Li et al, NSDI 2005) 

 

• Peers mapped onto positions on the ring 
– Uniform hash function (e.g., SHA-1) for peerId 

– Establish successor and predecessor ring links 

• Small-World connectivity establishment 

 

 

 

 

• No restrictions on peer-degree 
• Implicit load balancing 
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Approximation of Kleinberg’s model 
• Given node u if we can partition the remaining peers into sets A1, A2, A3, … , AlogN , 

where Ai, consists of all nodes whose distance from u is between 2-i and 2-i+1. 

• Then given r=dim each long range contact of u is nearly equally likely to belong to 
any of the sets Ai 

• When q=logN – on average each node will have a link in each set of Ai 

A4 

A3 

A2 

A1 



Traditional DHTs and Kleinberg model 

 

• Randomized
Chord’s 
model 

 

 

 

 

• Kleinberg’s 
model 

• Most of the structured P2P systems are similar to Kleinberg’s model and 
are called logarithmic-like approaches. E.g. 

 

–  Chord (randomized version) q=logN, r=1 

–  Gnutella q=5, r=0 



Similarity to other P2P construction 
techniques 

• Many existing P2P are just the “special 
cases” of Kleinberg’s navigable Small-
World 

– Ring based 

– Tree based 

– Hybercube 

– Torus 

– Etc., 

 
• Kleinberg’s Small-World 

– Randomized construction 

– No restrictions on peer-degree 

– “choice-of-two” possibility 

– Effective nonGreedy routing 



What to take away from the small-world tour? 

• How can we characterize P2P overlay networks such that 
we can study them using graph-theoretic approaches? 

 
• What is the main difference between a random graph 

and a SW graph? 
 

• What is the main difference between Watts/Strogatz 
and Kleinberg models? 
 

• What is the relationship between structured overlay 
networks and small world graphs? 

 
• What are possible variations of the small world graph 

model? 
 

• How does it relate to our social networks? 



Non-Uniform 
 Structured Overlays 



Structured overlay 

• Build a routing table 

– Each peer has a well-defined neighbourhood and  
information about its immediate neighbours (in contrast to 
unstructured topologies) 

• The search operation is performed efficiently (in 
contrast to unstructured) 

 



Data on a Ring-Structured Overlay 
• Peers mapped onto an ID the ring identifier 

space 

– Uniform hash function (e.g., SHA-1) 

• Resources mapped on to an ID the ring 
identifier space 

– Uniform hash function 

• Peers are responsible for a range of the 
ring identifier space 

 

• Connectivity establishment 

 

• E.g., Symphony [Manku et al. 2003] 

 

• Uniform peer key (id) distribution 

– Implicit load balancing 
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Problems with range queries 

• Point queries 
– E.g. “ABBA Waterloo” 
– “ABBA Mamma Mia” 

• Range queries: 
– What about all the files with prefix “ABBA..”? 
– Uniform hashing assigns all the files to random locations on the 

ring 
– Uniform distribution of IDs (keys) 
– Inefficient lookup! 

• Order preserving (Lexicographic) hashing 
– If a > b then id(a)>id(b) (in uniform hashing id(a)=rand; 

id(b)=rand) 
– Non-uniform distribution (depends on the data)! 

 
 
 



Problems with uniform key 
distributions 

• Order preserving hash functions (e.g. Lexicographical 
ordering) 

• Peer clustering in key space 
 Etc. 

 
 
 
 

• For skewed key distributions 
– How do we make SW long range links? 

 



Extending Kleinberg’s model 
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Extension of the “uniform model” to 
nonuniform case (1) 
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the space
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Small-World P2P in non-uniform spaces  

• f(x) – probability density function of the peer keys. 
• Long range neighbours are chosen inversely 

proportional to the integral of f(x) between the two 
nodes  
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Expected routing cost in such a network using greedy routing is 
O(log N) when the network degree is O(log N). 



Acquiring Peer Key Distribution 

• Problem: 
– Need to acquire the global key distribution function locally.  

 

 

• Uniform sampling  

 (Mercury [Bharambe et al.,2004]) 

– log2N samples  

– Cannot cope with 

complex distributions!  

 

• Non-uniform (Scalable Sampling) 
– OSCAR (Overlays using SCAlable sampling of Realistic distributions) 

– [DBISP2P06, ICDE07, TAAS10]  
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Sampling by random walks 

• Bharambe et al. 2004 
”Mercury: supporting 
scalable multi-attribute 
range queries” 

• Sampling by random walks 

– A random walk with TTL at 
least logN ends up in a 
uniform random node (on 
expander graphs) 



Sampling in Mercury 

– Every node periodically 
issues k1 samples 

• The sampled nodes return its 
ID and their own collected 
samples (k2) 

• It is suggested k1=logN 

– Over time the ID distribution 
histogram is built. 

 

– Real world distributions are 
far more complex! 
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Oscar: Modifying Kleinberg’s method 

• Choosing long-range link: 

 1) u.a.r. choose a partition  

 2) u.a.r. choose a peer within 
that partition 

 

 

• It can be proven that search 
cost remains O(log2N) 
 

 O(logN) with O(logN) degree 



Oscar: Dealing with Skewed Spaces 

• Find the boundaries between partitions! 
• Uniform sampling by random walks. 
• k samples for each boundary. 



Oscar: an Example 

• O(k*log N) samples is needed to construct a routing efficient 
network. 

 

• Does not depend on the complexity of the distribution 

 

• “The view” can be copied from a ring-neighbour  
(by contacting median peers and requesting their ring-neighbour ids) 

 

0 1 



Recap of non-uniform structured overlays 

Acknowledgements:  
Some slides were derived from the lecture notes of K. Aberer (EPFL, Switzerland) and A. Datta (NTU, 
Singapore) 

• What is the relationship between the resource placement and the network 
structure in structured P2P overlays? 
 

• What is a challenge for enabling range queries for structured overlays? 
 

• What is the main difference between a regular Kleinberg’s model Small-
World model for non-uniform id spaces? 

 
• How does random sampling work? 

 
• What are the possible solutions to solve the non-uniform resource 

placement problem? 


