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e Signal norms, system gains and the small gain theorem
e The closed-loop system and the design problem
- Characterized by six transfer functions: need to look at all!

— Internal stability: stability from all inputs to all outputs
(sufficient to check that F,, S, SG and SF, are all stable)

— Sensitivity function (suppression of load disturbances) and
Complementary sensitivity (noise, robust stability)
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Goals

After this lecture, you should
- Understand the concepts of robust stability and robust performance

- Be able to derive multiplicative uncertainty models

- from parametric uncertainties (e.g. of process pole/zero locations)
- from frequency responses of multiple plants

- Analyze robust stability using the small-gain theorem

— “pull out” uncertainty and re-write system on standard form
— assess robust stability in Bode and Nyquist diagrams
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Motivating example

Assume that you want to control a system on the form
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How can we design a controller that is guaranteed to work for all G?
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Robustness

Robustness=Insensitivity to model errors
(differences between modelled and actual system behavior)

To reason about uncertainty we need to model it!

e The uncertainty set: defines a family of possible models
(quantifies how much we do not know about the system)

Would like to establish

e Robust stability (stability of all plants in uncertainty set)
e Robust performance (meet specs for all plants in uncertainty set)
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Classes of uncertainty

Parametric uncertainty:
e Model structure known, but some parameters are uncertain

Dynamic uncertainty:

e Some (often high frequency) dynamics is missing, either
by lack of understanding or in order to get a simpler model

Often, we have a combination of the two.
e Convenient to represent in “lumped” form
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Multiplicative uncertainty

Multiplicative uncertainty
N ={Gp(s) = G(s)(1 + Wi(s)Ar(s)) | [Arlle < 1}

Here,
e TII; is a family of possible behaviours of the physical plant
e Ais any stable transfer function with gain less than one

Robust stability: closed-loop stability for all G, € II;
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Robust stability w. multiplicative uncertainty

<N
A

Small-gain theorem-> interconnection stable if
(a) nominal closed-loop system is internally stable and W, stable, and
(b) [WiT|ls <1

To ensure robust stability:
e first write uncertain system on standard form (find G(s), W(s))
e make sure that (a) and (b) are satisfied
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Example: uncertain gain

Consider the set of possible plants
GP(S) = k'GO(S)g Fmin <k < Emax

Any feasible k can be written as k = k + r,A for some |A| < 1 and

kmin + kmax kmax - kmin
T p—
2 Tk 9

Hence, we can re-write the uncertainty in standard form

k=

;= {G,(s) = kGo(s)(1+ = A)]|A| <1
fouo =T+ ) 1<)

Wr(s)
Note: here it is enough to let A be real (in standard form A is complex)
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Example: uncertain zero location

Consider the set of possible plants

Gp(s) = (1 4+ s7)Go(s);, Tmin <7 < Tmax

Can be put into standard form via

?

(Tmin + ’7_1rna><:)/2
)

rr = (Tmax — Tmin /2

G(s) = (1 + s7)Go(s)
Wils) = 17:;8?8

Note: W, is now frequency dependent, A is still real
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Alternative approach to obtain weight

Note that multiplicative uncertainty class

N ={Gp(s) = G(s)(1 + Wi(s)Ar(s)) | |[Arllec < 1}

can be re-written as

I = {Gp(s) | IWi(s) " G(s) " (Gp(s) — G(s))]los < 1

Thus, the uncertainty about the system captured by W, if

Gp(iw) — G(iw)

Wilie)| > |75

VGp ell;, Vw

Note: RHS can be interpreted as relative error of nominal model G.
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Motivating example cont’'d

Consider the uncertain system

k
Gp(s) = e % ko rec[23
p(8) = ——— 2,3
with nominal plant
k
G(s) = =
s + 1
Sample relative errors (full lines) and corresponding W; (dashed)
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Motivating example cont’'d

Assume that we want to control the system using a PI controller

C(s) = K, (1 + 8;)

We tune the gains using the lambda-tuning method

7—-
Ky=——"  T,=7
P R@+ ) !

where lambda is a tuning parameter.

Can we find lambda so that the PI controller guarantees robust stability?
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Motivating example cont’'d

Robust stability condition |[WiT|le < 1 holds if |T(iw)| < [W; ' (iw)] Vw
Hence, we can validate robust stability in the bode diagram of T.

For two values of lambda, we obtain two complementary sensitivities
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First setting (T1) is not robustly stable, second setting (T2) is.
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Robust stability in the Nyquist curve

Uncertain system:

e (G(iw) takes one of several possible values at each frequency
- a family of Nyquist curves
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e Robust stability if uncertainty regions do not encircle -1 point
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Complementary sensitivity in Nyquist

Constraint on complementary sensitivity

1T (iw) [0 < My

also yields circles that should be avoided by the Nyquist curve.

-2 -1 0 1 2

Circles centered at (—MZ2/(MZ — 1), 0) with radius Mg/(M7 — 1)

EL2520 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



Frequency domain specifications

Forbidden area

S|

IT|

Frequency (rad/s)

: —1,.
S (iw)| < W5 (iw)]
: —1,.
T(iw)| < Wi (iw)|
Can we choose weights we, w; (“forbidden areas”) freely?

- No, there are many constraints and limitations!
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Extension: shaping the gang of six

Can shape all relevant transfer functions (in “the gang of six”)

HWSSHOO <1
||WTT”OO <1

HWSFTSFTHOO <1

This is the topic of Computer Exercise 1b!
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Robust performance

Nominal performance specified in terms of sensitivity function
|WPS| S 1 Yw

Robust performance

|(WpSy| <1  for all w and all S,

Since

1 %4
WpS — Wp P

1+L, 1+L+WAL

Worst-case A is such that 1+L and w;A L point in opposite directions

W WnpS
WpS,| < W __|WpS]
1+ L — WL 1—[W,T]|

Yw
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Robust performance cont’ d

Robust performance

|(WpS|
1 — |W]T| o

(WpSy| =
Can be expressed as
(WpS| 4+ [W/T| <1 Vw

Sometimes approximated by the mixed sensitivity constraint

WpS <1
W]T _
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Robust stability and performance

In summary

nominal performance |WpS| <1 Vw
robust stability |[W/T| <1 Vw
robust performance |WpS|+ |W;T| <1 Vw

Note that nominal performance and robust stability implies
|(WpS| 4+ [W/T| <2 Vw

(i.e. robust stability cannot be “too bad”).

Only holds in SISO case.
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Summary

Robustness
— Insensitivity to model errors

Can guarantee robustness if we model (or bound) uncertainty
— General tool: small gain theorem

- Sometimes need to “pull out” uncertainty by hand

— Sometimes, can fall back onto standard forms
(e.g. multiplicative input uncertainty)

Robustness typically introduces new constraints on T

Robust performance: acceptable S, despite uncertainties.
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