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So far… 

•  Signal norms, system gains and the small gain theorem 
•  The closed-loop system and the design problem 

–  Characterized by six transfer functions: need to look at all! 
–  Internal stability: stability from all inputs to all outputs 

(sufficient to check that Fr, S, SG and SFy are all stable) 
–  Sensitivity function (suppression of load disturbances) and 

Complementary sensitivity (robust stability) 
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Frequency domain specifications 

Can we choose weights WS, WT (“forbidden areas”) freely? 
–  No, there are many constraints and limitations! 

Forbidden	
  area

Forbidden	
  area
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Today’s lecture 

•  Fundamental limitations in control systems design 
–  S+T=1 (both can’t be small at the same time) 
–  Can’t attenuate disturbances at all frequencies 

 
•  Limiting factors: 

–  Unstable poles 
–  Non-minimum phase zeros 
–  Time delays 
–  Control authority (exercises; final part of course) 

•  Reasonable specifications, and rules-of-thumb! 

Course book: Chapter 7. 
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Reasonable specifications 
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Specifications in terms of WS
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Interpolation constraints 
Fact: Assume that the closed-loop system is internally stable.  

1.  If G(s) has a RHP zero at s=z, then T(z)=0, S(z)=1 
 2.  If G(s) has a RHP pole at s=p, then S(p)=0, T(p)=1 

 
 
Proof. For internal stability, S must be stable, hence it cannot have  
any RHP pole. Consequently, SFy stable implies that Fy can’t  have any 
RHP pole either, so F(z) must be finite. Thus, L(z)=G(z)Fy(z)=0, so 
 
T(z)=L(z)/(1+L(z))=0,    S(z)=1-T(z)=1. 
 
Similarly, a RHP pole at s=p requires that S has a RHP zero at s=p 
(otherwise, SG would not be stable), so S(p)=0 and T(p)=1-S(p)=1. 
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The maximum modulus principle 

Theorem. Suppose that f(s) is stable. Then the maximum value 
of |f(s)| for s in the RHP is attained along the imaginary axis, i.e. 
  
 
 
Proof. See course on complex analysis. 

kfk1 = sup
!

|f(i!)| � |f(s0)| 8s0 2 RHP
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Limitations from RHP zeros 

Theorem. Let WS be stable and minimum phase, and let  
S be the sensitivity of an internally stable closed-loop system. Then 
 
 
 
for every RHP zero z of the loop gain L=GFy. 
 
Proof. By the maximum modulus principle and interpolation constraints 
 
 

1 � kWSSk1 � |Ws(z)S(z)| = |WS(z)| 8z 2 RHP
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Bandwidth limitation from RHP zero 

Consider the weight 
 
 
then 
 
 
 
So 
 
 
The reasonable value Ms=2 gives the rule of thumb 



Re-statement and interpretation 
It is not possible to find a controller which 
a)  gives an internally stable closed-loop system, and 
b)  results in a sensitivity function S that satisfies  

 
unless                               for every RHP zero of G(s)  
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|S(i!)|  |W�1
S (i!)| = MS

����
i!

i! + !BSMS

���� 8!

!BS  (1�MS)
�1z
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Example 
Let 
 
If                                                   then S has poles in 
 
 
S for       =0.25, 0.5, 2, 8 – pushing bandwidth results in peaking  !

!(�1± i)
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Bandwidth limitations by time delays 

Since 
 
 
a system with time delay T 
 
 
can be seen as a system with a RHP zero at s=2/T.  
 
Then, Ms=2 suggests 
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Limitations from RHP poles 

Theorem. Let WT be stable and minimum phase, and let T be the 
complementary sensitivity  of a stable closed-loop system. Then 
 
 
 
for every RHP pole p of the loop gain L=FyG 
 
Proof. Similarly to the S-constraints, we have 
 
 
where the second inequality follows from maximum modulus and the 
final equality is due to the interpolation constraints.  
 
   

1 � kWTTk1 � |WT (p)T (p)| = |WT (p)|
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Bandwidth limitation from RHP pole 

Consider the weight 
 
 
then 
 
 
 
So 
 
 
The more reasonable value MT=2 gives the rule of thumb 
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Example 
Let 
 
If                                        then T has poles in 
 
T for       =0.25, 0.5, 2, 8 – too low bandwidth forces T to peak  
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Implications for loop shaping 
RHP zeros z and RHP poles restrict the bandwidth of the loop gain 
 
 
 
 
 
 
 
 
 
 
 
 
 
Would like bandwidth smaller than z/2, larger than 2p (typically z>>p) 
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Example: balancing act 

Balancing a rod: 
 
Where M, m are the masses of the hand and rod, respectively; 
l the length of the rod, and g is acceleration due to gravity. 
 

    Unstable pole at 
 
 
 

    With M=m, l=1 m, then p=4.5 rad/s 
     
    Requires response time of 0.1-0.2 s 
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Balancing act cont’d 

Try to balance the rod while only observing its base 
 
 
 
Introduces RHP zero at 
 
Practically impossible to balance when M=m, since 
 
Try! 

z < p =
p
2z
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Example: X-29 

 
 
 
 
 
 
 
Under one flying condition, the X-29 can be modelled by 
 
 
RHP pole at s=6 à 
RHP zero at s=26à 
 
Difficult to design a controller that satisfies these requirements! 

!BS  26/2 = 13
!0T � 2⇥ 6 = 12
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Bode’s relations 

Links phase and amplitude curves of loop gain 
 
 
 
 
 
A positive phase margin requires                        so the 
negative slope of |L| can be at most 2 around cross-over 
  

argL(i!c) > �⇡
!c



For small   , it approximately holds that 
 
 
 
 
 
 
 
 
 
 
àNeed sufficient spacing between frequency range where S is small 
   and frequency range where T is small! 
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Implications for loop transfer function 

!
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Bode’s integral theorem 

Theorem. Suppose that L(s)=Fy(s)G(s) has relative degree ¸ 2, 
and that L(s) has Np RHP poles located at s=pi. Then, for closed- 
Loop stability, the sensitivity function must satisfy 
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Intepretation of Bode’s integral 

All stable controllers give the same value of  

If L(s) is stable, then area for |S| above and below 1 is equal 
–  Sensitivity reduction in one frequency range comes at  

expense of sensitivity increase at another (“waterbed effect”) 

 

Unstable poles increase the overall sensitivity 
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Summary 

Dynamics introduces fundamental limitations of feedback control performance  
–  RHP zero at z ) 
–  Time delay T  ) 
–  RHP pole at p ) 

Bode’s relation 
–  good phase margin requires separation between frequency ranges 

where S is small and frequency ranges where T is small 
 
Bode’s integral theorem 

–  reduced sensitivity in one frequency range comes at expense of higher 
sensitivity in other range (“waterbed effect”) 

 
 
 
 

!BS  z/2
!BS  1/T
!0T � 2p


