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e Signal norms, system gains and the small gain theorem
e The closed-loop system and the design problem
- Characterized by six transfer functions: need to look at all!

— Internal stability: stability from all inputs to all outputs
(sufficient to check that F,, S, SG and SF, are all stable)

— Sensitivity function (suppression of load disturbances) and
Complementary sensitivity (robust stability)
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Frequency domain specifications

Forbidden area

S|

IT|

Frequency (rad/s)

: —1,.
S (iw)| < W5 (iw)]
. —1,.
T(iw)| < Wi (iw)|
Can we choose weights W, W (“forbidden areas”) freely?

- No, there are many constraints and limitations!
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Today s lecture

e Fundamental limitations in control systems design
- S+T=1 (both can’t be small at the same time)
- Can’ t attenuate disturbances at all frequencies

e Limiting factors:
- Unstable poles
— Non-minimum phase zeros
— Time delays
— Control authority (exercises; final part of course)

e Reasonable specifications, and rules-of-thumb!

Course book: Chapter 7.
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Gain

Reasonable specifications
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[SWglloo < 1 [TWrlleo <1

implied by [S(iw)| < [Wgt(iw)| implied by |T(iw)| < [Wx*(iw)]
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Gain

Specifications in terms of W
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Interpolation constraints

Fact: Assume that the closed-loop system is internally stable.
1. If G(s) has a RHP zero at s=z, then T(z)=0, S(z)=1
2. If G(s) has a RHP pole at s=p, then S(p)=0, T(p)=1

Proof. For internal stability, S must be stable, hence it cannot have
any RHP pole. Consequently, SF, stable implies that F, can’t have any
RHP pole either, so F(z) must be finite. Thus, L(z)=G(z)F,(z)=0, so
T(z)=L(z)/(1+L(2))=0, S(z)=1-T(z2)=1.

Similarly, a RHP pole at s=p requires that S has a RHP zero at s=p
(otherwise, SG would not be stable), so S(p)=0 and T(p)=1-S(p)=1.
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The maximum modulus principle

Theorem. Suppose that f(s) is stable. Then the maximum value
of |f(s)| for s in the RHP is attained along the imaginary axis, i.e.

| flloec =sup |f(iw)| > |f(s0)| Vsg € RHP

Proof. See course on complex analysis.
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Limitations from RHP zeros

Theorem. Let W¢ be stable and minimum phase, and let
S be the sensitivity of an internally stable closed-loop system. Then

[WsSlloo 1= [We(z)| <1 (IWs(2)7Y > 1)
for every RHP zero z of the loop gain L=GF,.

Proof. By the maximum modulus principle and interpolation constraints

1> [[WsS|lw > |Wi(2)S(2)| = [Ws(2)| ¥z € RHP
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Bandwidth limitation from RHP zero

Consider the weight

1
Ws(s) = -+ S

S S
then
1
Ws(2)| <1= — + B9 <1
M z
So

wpg < (1—M;1)z <2

The reasonable value M.=2 gives the rule of thumb

wpg <

N |
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Re-statement and interpretation

It is not possible to find a controller which
a) gives an internally stable closed-loop system, and
b) results in a sensitivity function S that satisfies

w

1S(iw)| < [Wg ' (iw)| = Ms Voo

w + wpgMg
unless wps < (1 — Mg)~ 'z for every RHP zero of G(s)

wWps = (1 — Ms)_lz

z  (not OK)
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Example

s+ 1
aps + aq

l—s
s(s+ 1)
If ag=1/(2w?), a1 = (w4 1)/w then S has poles in w(—1=+1)

Let G(s) = Fy(s) =

S forw=0.25, 0.5, 2, 8 - pushing bandwidth results in peaking
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Bandwidth limitations by time delays

Since
e_sT - 1 — 8T/2

T 14 sT/2

a system with time delay T

G(s) = Gp(s)e 5T

can be seen as a system with a RHP zero at s=2/T.

Then, M_=2 suggests

1
WBSS?
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Limitations from RHP poles

Theorem. Let W, be stable and minimum phase, and let T be the
complementary sensitivity of a stable closed-loop system. Then

[WrT|leo <1 = [Wr(p)| <1
for every RHP pole p of the loop gain L=F,G

Proof. Similarly to the S-constraints, we have

1> |WrT| oo = [Wr(p)T(p)| = [Wr(p)|

where the second inequality follows from maximum modulus and the
final equality is due to the interpolation constraints.
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Bandwidth limitation from RHP pole

Consider the weight

S 1
Wr(s) = — 4+ —
wor M
then
1
Wr()|<1=-2+-—-— <1
wor M
So
D
>p

woT >
=9 _1/M7
The more reasonable value M;=2 gives the rule of thumb

woT = 2p
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Example

s+ 1 __bos+ b1
s(s—1)’ Fy(s) = s+ 1

If bg =14 2w, by =2w? then T has polesin w(—1=+1)

Let G(s) =

T forw=0.25, 0.5, 2, 8 - too low bandwidth forces T to peak
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Implications for loop shaping

RHP zeros z and RHP poles restrict the bandwidth of the loop gain
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Would like bandwidth smaller than z/2, larger than 2p (typically z>>p)
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Example: balancing act

—9g
s2(Mls? — (M + m)g)
Where M, m are the masses of the hand and rod, respectively;
| the length of the rod, and g is acceleration due to gravity.

Balancing a rod: G(s) =

Unstable pole at
(M +m)g
Ml
With M=m, |I=1 m, then p=4.5 rad/s

Requires response time of 0.1-0.2 s
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Balancing act cont’ d

Try to balance the rod while only observing its base
152 — g

Gls) = s2(Mls?2 — (M 4+ m)g)

Introduces RHP zero at z = /g/I

Practically impossible to balance when M=m, since z < p = V22

Try!
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Example: X-29

Under one flying condition, the X-29 can be modelled by
G(s) = C(s)S =20

s
RHP pole at s=6 > wor = 2 X 6 = 12
RHP zero at s=26> wps < 26/2 =13

Difficult to design a controller that satisfies these requirements!
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Bode’ s relations

Links phase and amplitude curves of loop gain

d
dlogw

arg L(iw) < g log | L(iw)]

A positive phase margin requires arg L(iw.) > —7 so the
negative slope of |L| can be at most 2 around cross-over w,
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Implications for loop transfer function

For small w, it approximately holds that

1
S| <e< |L| > —, T|<es |L|<e
€

4

10
log o

“>Need sufficient spacing between frequency range where S is small
and frequency range where T is small!
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Bode’ s integral theorem

Theorem. Suppose that L(s)=F (s)G(s) has relative degree > 2,
and that L(s) has N, RHP poles located at s=p;. Then, for closed-
Loop stability, the sensitivity function must satisfy

Np

/OO log |S(iw)| dw = 7 Z Re(p;)

0 =1
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Intepretation of Bode’ s integral

All stable controllers give the same value of

/Iog 1S (iw)| dw

If L(s) is stable, then area for |S| above and below 1 is equal

— Sensitivity reduction in one frequency range comes at
expense of sensitivity increase at another (“waterbed effect”)
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Unstable poles increase the overall sensitivity
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Summary

Dynamics introduces fundamental limitations of feedback control performance
-~ RHP zero at z = wpg < z/2
- Timedelay T = wpg < 1/T
— RHP pole at p = wor > 2p

Bode’ s relation

— good phase margin requires separation between frequency ranges
where S is small and frequency ranges where T is small

Bode’ s integral theorem

— reduced sensitivity in one frequency range comes at expense of higher
sensitivity in other range (“waterbed effect”)
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