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-

e Signal norms, system gains and the small gain theorem
e The closed-loop system and the design problem
- Characterized by six transfer functions: need to look at all!
- Internal stability: stability from all inputs to all outputs
(sufficient to check that F, S, SG and SF, are all stable)
- Sensitivity function (suppression of load disturbances) and
Complementary sensitivity (robust stability)
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Freguency domain specifications

Forbidden area

Frequency (rad/s)
. —1,.
[S(iw)| < [Wg ™ (iw)|
. “1,.
|T(iw)| < [Wr = (iw)]
Can we choose weights Wg, W+ (“forbidden areas”) freely?

- No, there are many constraints and limitations!
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Today’ s lecture

e Fundamental limitations in control systems design
- S+T=1 (both can’t be small at the same time)
- Can’t attenuate disturbances at all frequencies

e Limiting factors:
- Unstable poles
- Non-minimum phase zeros
- Time delays
- Control authority (exercises; final part of course)

e Reasonable specifications, and rules-of-thumb!

Course book: Chapter 7.
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Gain

Reasonable specifications
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[SWslloo < 1 [TWrlleo <1

implied by |S(iw)| < [Wgl(iw)|  implied by |T(iw)| < Wit (iw)]
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Gain

Specifications in terms of W
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Interpolation constraints

Fact: Assume that the closed-loop system is internally stable.

1. If G(s) has a RHP zero at s=z, then T(z)=0, S(z)=1
2. If G(s) has a RHP pole at s=p, then S(p)=0, T(p)=1

Proof. For internal stability, S must be stable, hence it cannot have
any RHP pole. Consequently, SF, stable implies that F, can’t have any
RHP pole either, so F(z) must be finite. Thus, L(z)=G(z)F,(z)=0, so

T(z)=L(z)/(1+L(z))=0, S(z)=1-T(z)=1.

Similarly, a RHP pole at s=p requires that S has a RHP zero at s=p
(otherwise, SG would not be stable), so S(p)=0 and T(p)=1-S(p)=1.
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The maximum modulus principle

Theorem. Suppose that f(s) is stable. Then the maximum value
of |f(s)| for s in the RHP is attained along the imaginary axis, i.e.

1lloe = sup|f(iw)] = [f(s0)|  Vso € RHP

Proof. See course on complex analysis.
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Limitations from RHP zeros

Theorem. Let W be stable and minimum phase, and let
S be the sensitivity of an internally stable closed-loop system. Then

[WsSlloo <1= [We(2)| <1 (IWs(2)7H > 1)
for every RHP zero z of the loop gain L=GF,.

Proof. By the maximum modulus principle and interpolation constraints

1> [WsS|loo > [Wa(2)S(2)| = [Ws(2)| Vz € RHP
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Bandwidth limitation from RHP zero

Consider the weight

Ws(s) = — + 288

Mg s
then
1
Ws()| <1= —+“B5 <1
M z
So

wps < (1-M;Y)z<2

The reasonable value M,=2 gives the rule of thumb

wps <

N[
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Re-statement and interpretation

It is not possible to find a controller which
a) gives an internally stable closed-loop system, and
b) results in a sensitivity function S that satisfies

iw

. < —1/- - Me|— "
S| < Wy ()] = Ms | 7

Yw

unless wps < (1 — Ms) "'z for every RHP zero of G(s)

; wps = (17M5)712

- B \wBs > (1—-Ms)™ 'z (not OK) :

10 L L

g

Example
_1-s _ s+1
Let G(s) = T Fy(s) = oo
If ag=1/(2w?), a1 = (w4 1)/w then S has polesin w(—1=+1)

S forw=0.25, 0.5, 2, 8 - pushing bandwidth results in peaking

107 10° 10 10°
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So

Bandwidth limitations by time delays

Since
e_sT ~ 1 bl ST/2
14 sT/2
a system with time delay T

G(s) = Go(s)e*T

can be seen as a system with a RHP zero at s=2/T.

Then, M =2 suggests

wps <

Nl
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Bandwidth limitation from RHP pole

Consider the weight

s 1
W = — _
() =2+
then

1y
S

Wr(p) <1= L2 +
woT T

p
>— >
T =1 "1/mp =7

The more reasonable value M;=2 gives the rule of thumb

wor = 2p
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Limitations from RHP poles

Theorem. Let W; be stable and minimum phase, and let T be the
complementary sensitivity of a stable closed-loop system. Then

WrT|leo <1 = [Wr(p)| <1
for every RHP pole p of the loop gain L=F G
Proof. Similarly to the S-constraints, we have
12> [WrT e 2 [Wr(p)T(p)] = [Wr(p)|

where the second inequality follows from maximum modulus and the
final equality is due to the interpolation constraints.
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Example
Let G(s) = % Fy(s) = 205 b1

s+1

If bg=142w, by =2w? thenT has polesin w(—1=+1i)

T for w=0.25, 0.5, 2, 8 - too low bandwidth forces T to peak
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Implications for loop shaping

RHP zeros z and RHP poles restrict the bandwidth of the loop gain

10' —\‘

Would like bandwidth smaller than z/2, larger than 2p (typically z>>p)
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Example: balancing act

-9
s2(Mls? — (M +m)g)
Where M, m are the masses of the hand and rod, respectively;
| the length of the rod, and g is acceleration due to gravity.

Balancing a rod: G(s) =

Unstable pole at

p= | MEmyg
' Mi

Y With M=m, I=1 m, then p=4.5 rad/s

Requires response time of 0.1-0.2 s
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Balancing act cont’ d

Try to balance the rod while only observing its base
1s2 —
G(s) = J

s2(Mls? — (M +m)g)

Introduces RHP zero at z = 4/g/l
Practically impossible to balance when M=m, since z <p = V22

Try!

EL2520 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se

Example: X-29

Under one flying condition, the X-29 can be modelled by
G(s) = G(s)° =20

s—6

RHP pole at s=6 > wor > 2 X 6 =12

RHP zero at s=26-> wpg < 26/2 =13

Difficult to design a controller that satisfies these requirements!
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Bode’ s relations

Links phase and amplitude curves of loop gain

T d
arg L(iw) < —log |L(%
g (W)—zcuogw g |L(iw)]

A positive phase margin requires arg L(iw.) > —7 so the
negative slope of |L| can be at most 2 around cross-over w,
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Implications for loop transfer function

For small w, it approximately holds that

1
S| <e<|L| >, T|<es |L|<e

€

“ \

I10°
10'2 i 1
10” 10° 107 10*

log ®

>Need sufficient spacing between frequency range where S is small
and frequency range where T is small!
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Bode’ s integral theorem

Theorem. Suppose that L(s)=F,(s)G(s) has relative degree > 2,
and that L(s) has N, RHP poles located at s=p;. Then, for closed-
Loop stability, the sensitivity function must satisfy

oo Np
/O log [S(iw)| dw =7 3 Re(p;)
i=1
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Intepretation of Bode’ s integral

All stable controllers give the same value of
/Iog S (iw)| dw

If L(s) is stable, then area for |S| above and below 1 is equal

- Sensitivity reduction in one frequency range comes at
expense of sensitivity increase at another (“waterbed effect”)

10°
Frequency (rad/sec)

Unstable poles increase the overall sensitivity
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Summary

Dynamics introduces fundamental limitations of feedback control performance
- RHPzeroatz = wps < z/2
- Timedelay T = wpg <1/T
- RHPpoleatp = wor > 2p

Bode’s relation
- good phase margin requires separation between frequency ranges
where S is small and frequency ranges where T is small

Bode’s integral theorem
- reduced sensitivity in one frequency range comes at expense of higher
sensitivity in other range (“waterbed effect”)
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