Epidemic Algorithms

Slides by Amir H. Payberah (amir@sics.se), Jim Dowling

mailto:amir@sics.se

Introduction

* Motivations

= Existing information dissemination protocols have scalability problems.
= Randomized protocols may have a smaller overhead.

= Trade-off between reliability and scalability.

e Can be applied

= To large-scale distributed systems (millions of nodes).

= When real-time information dissemination is not required.

Epidemic Protocols

* Epidemics study the spread of a disease or infection in terms of populations
of infected/uninfected individuals and their rates of change.

 How does it work?

= [nitially, a single individual is infective.

= Individuals get in touch with each other, spreading the update.

e Qur goal is to spread the infection (update) as fast and completely as
possible!

ﬁ

Two Styles of Epidemic Protocols

e Anti-entropy

e Rumor mongering

Anti-entropy

* Each peer p periodically contacts a random partner q selected from the
current population.

* Then, p and g engage in an information exchange protocol, where updates
known to p but not to g are transferred from p to g (push), or vice-versa
(pull), or in both direction (push-pull).

Rumor Mongering

e Peers are initially ignorant.

 When an update is learned by a peer, it becomes a hot rumor.

e While a peer holds a hot rumor, it periodically chooses a random peer from
the current population and sends (pushes) the rumor to it.

e Eventually, a node will lose interest in spreading the rumor.

Rumor Mongering: Loss of Interest
e Counter vs. Coin

= Counter: lose interest after k contacts.

= Coin (random): lose interest with probability 1/k.

 Feedback vs. Blind

= Feedback: lose interest only if the recipient knows the rumor.

= Blind: lose interest regardless of the recipient.

Epidemic Protocols Scale Very Nicely

e Participants’ load is independent of size

 Information spreads in log(system size) time.

% infected

o

.0

Time -

ﬁ

Use of Epidemic Protocols

e Aggregation protocols

* Membership management (Cyclon)

* Topology management (T-man)

» Etc.

Aggregation Protocols

Aggregation Protocols

e Aggregation is a common name for a set of functions that provide an
estimate of some global system property.

* Aggregation functions enable local access to global information, in order to
simplify the task of controlling, monitoring, and optimizing distributed
applications.

* Some examples of aggregation functions:

= The average load of nodes in a distributed storage system.
= The sum of free space in a distributed storage system.

= The total number of nodes in a P2P system.

11

A Generic Aggregation Framework

// timed event
timer (T time units)
g = SelectPeer()

send S to q
\\\\\\\\\\\‘// handle event

recv S, from p
send S to p

S = Update(s,S,)
// handle event

recv S, from ¢
S = Update(s,S,)

12

Some Comments

 Local state maintained by nodes:

= a real number representing the value to be averaged.

 selectPeer()

= performs a random selection among the set of current nodes.

e update(sp, sq)
= Avg: return (sp+sq)/2

= Max: return max(sp,sq)

13

Average Aggregation (1/5)

14

Average Aggregation (2/5)

(10+2)/2=6

16

Average Aggregation (4/5)

(16 +4) /2 =10

18

Some Comments

e If the graph is connected, each node converges to the average of the
original values.

 After each exchange the variance is reduced.

19

lllustration of Averaging

Initial state

w ,,
4 ‘i-

o
i, oy
lll-JI "‘ll.

L
’::1_1- '

ﬁ

Network Size Estimation

e Any ideas?

Network Size Estimation
e Any ideas?
* All nodes set their states to 0.

e The initiator sets its state to 1 and starts gossiping for the average.

* Eventually (after predefined k rounds) all nodes converge to the
avg=1/N.

22

Membership Management

Membership Management

 In a gossip-based protocol, each node in the system periodically exchanges
information with a subset of peers.

* The choice of this subset is crucial.

 |deally, the peers should be selected following a uniform random sample of
all nodes currently in the system.

24

Achieving a Uniform Random Sample

* Each node may be assumed to know every other node in the system.

* However, providing each node with a complete membership table from
which a random sample can be drawn, is unrealistic in a large-scale
dynamic system.

25

An Alternative Solution

* Peer sampling

e Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

e Periodically refreshes the table using a gossiping procedure.

26

Peer Sampling Generic Framework (1/3)

// timed event every T time units
handle
g = view.SelectPeer()
buf = ((myAddress, 0))
view.permute()
move oldest H items to the end of view
buf.append(view.head(c/2-1))
send buf to q
recv buf, from ¢
view.select(c, H, S, buf))
view.1increaseAge()

27

Peer Sampling Generic Framework (2/3)

// receiver handler
handle
recv buf, from p
buf = ((myAddress, 0))

view.permute()
move oldest H items to the end of view

buf.append(view.head(c/2-1))
send buf to p

view.select(c, H, S, buf))
view.1lncreaseAge()

28

Peer Sampling Generic Framework (3/3)

// view select method
method view.select(c, H, S, buf))

view.

view.
view.

view

append (buf))
removeDuplicates()
removeOldItems(min(H, view.size-c))

.removeHead(min(S, view.size-c))
view.

removeAtRandom(view.size-c)

29

Designh Space

» Peer Selection

= Rand: uniform random Peer ASelection
= Tail: highest age
— Tall
* View Propagation
—1— Rand
= Push
= Push-Pull & |
N |
\é Push
\2@)
» View Selection &

- Blind:H=0,S=0
= HealerrH=c/2 View Selection

= Swapper:H=0,S=c/2

\
Push-Pull

» VView Propagation

30

ﬁ

Gossip-based Peer Sampling Protocol (1/7)

nl1lo0

" - g
- .
o -

Cﬂ n5 n4
B - -
n7 n6

- =

Gossip-based Peer Sampling Protocol (2/7)

Gossip-based Peer Sampling Protocol (3/7)

n2

o —
n9 =5
=
n4

33

Gossip-based Peer Sampling Protocol (4/7)

n2

o —
n9 =5
=
n4

34

Gossip-based Peer Sampling Protocol (5/7)

35

Gossip-based Peer Sampling Protocol (6/7)

36

Gossip-based Peer Sampling Protocol (7/7)

nl10
nl

n2
n9 \ \

—
n3
==
n8 /

= -

n4
=
n’7
né
o

37

Newscast as a Peer Sampling Example

» Peer Selection

= Rand: uniform random Peer ASelection
= Tail: highest age
—— Tail
* View Propagation
—1— Rand
= Push
© Push-Pul Q}\\Qb } } » VView Propagation
& Push Push-Pull
&
« View Selection &

= Blind:H=0,S=0
= HealerrH=c/2 View Selection

= Swapper:H=0,S=c/2

ﬁ

Newscast (1/7)

ﬁ

Newscast (2/7)

nl1l0

e Pick a random peer from my view

H

Newscast (3/7)

e Pick a random peer from my view

 Send each other view + own fresh link

41

Newscast (4/7)

e Pick a random peer from my view

 Send each other view + own fresh link

42

Newscast (5/7)

e Pick a random peer from my view
« Send each other view + own fresh link

e Keep c freshest links (remove own info and duplicates)

43

Newscast (6/7)

nl1l0

e Pick a random peer from my view
« Send each other view + own fresh link

e Keep c freshest links (remove own info and duplicates)

44

Newscast (7/7)

nv né
=

e Pick a random peer from my view
« Send each other view + own fresh link

e Keep c freshest links (remove own info and duplicates)

45

Cyclon as a Peer Sampling Example

» Peer Selection

= Rand: uniform random Peer ASelection
= Tail: highest age
—— Tall
* View Propagation
—— Rand
= Push
© Push-Pul Q}\&b } } » \View Propagation
& Push Push-Pull
&
« View Selection <&

= Blind:H=0,S=0
= HealerrH=c¢c/2 View Selection

= Swapper:H=0,S=c/2

ﬁ

Cyclon (1/5)

Cyclon (2/5)

nl1l0

)

e Pick the oldest peer from my view and remove it from the view.

48

Cyclon (3/5)

nl1l0

nll

n7

e Pick the oldest peer from my view and remove it from the view.

e Exchange some of the peers in neighbours (swap policy)

e The active peer sends its fresh address

49

Cyclon (4/5)

)

e Pick the oldest peer from my view and remove it from the view.

e Exchange some of the peers in neighbours (swap policy).

e The active peer sends its fresh address

50

Cyclon (5/5)

* Pick the oldest peer from my view and remove it from the view.

e Exchange some of the peers in neighbours (swap policy).

e The active peer sends its fresh address

51

Cyclon Properties:

* In a fail-free environment, no peer becomes disconnected in the
undirected graph.

* Pointers move, so peers change from being neighbor of one peer to
being the neighbor of another peer

100
90
80 f
70 F
60
50 f
40
30
20
10 |

min % of node removals to cause partitioning

0 20 40 60 80 100
cache size

Cyclon Properties:

* Starting from a state, where peers are connected in a chain.

* Convergence is defined by having the same average path length as a
random graph.

100000 T T
=20 — + -
c=50 --»=--

rand. graph c=20 — — -
10000 1 rand. graph ¢=50Q ------ :

1000 |

100 ¢

10 ¢

average path length from fixed node (log)

'l 1

0 20 40 60 80 100 120 140

cycles

53

Cyclon Properties:

* Clustering Coefficient (of a node): the ratio of existing links among the node’s
neighbors over the total number of possible links among them.

* Shows what percentage the neighbors of a node are also neighbors among
themselves.

c=20 — + -
C=50 - - --
rand. graph c=20 — — -

© rand. graph c=50 ------

] 0.1 }

= k!

g 5

]

= kY

2 0.01 } 3

: \

g kY

s 3

B 0001 e R

o

0.0001

0 20 40 60 80 1060 120 140

54

Cyclon Properties: Indegree Distribution

number of nodes

40000

35000 r

30000

25000 r

20000
15000

10000

5000 r

basic shuffling, c=20
enhanced shuffling, ¢=20 -
ra_qdam graph, c=20 ———

in-degree

40

55

Topology Management

T-Man

e T-man is a protocol that can construct and maintain any topology with
the help of a ranking function.

e The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node

57

A Generic T-Man Framework (1/2)

// timed event every T time units
handle
g = view.selectPeer()
myDescriptor = (myAddress, myProfile)
buf = merge(view, myDescriptor)
buf = merge(buf, rnd.view)
send buf to q
recv buf, from q

buf = merge(buf,, view)
view = selectView(buf)

58

A Generic T-Man Framework (2/2)

// receiver handler

Handle

recv buf, from p

myDescriptor = (myAddress, myProfile)
buf = merge(view, myDescriptor)

buf

merge(buf, rnd.view)

send buf to p
buf = merge(buf,, view)

view

= selectView(buf)

59

Some Comments

* SelectPeer

= Sort all nodes in the view based on ranking.

= Pick randomly one node from the first half.

* rnd.view

= provides a random sample of the nodes from the entire network, e.g.,
using cyclon

* SelectView

= Sort all nodes in buffer (about double size of the view)

= Pick out ¢ highest ranked nodes.

60

ﬁ

Ranking Function

* Sample ranking functions:
= Line: d(a, b) = |]a—b]
= Ring: d(a, b) = min(N - |a —b|, |a —b|)

after 8 cycles

62

Connectivity Problems
on the Open Internet

Private node

NAT Environments (1/4)

nl

-

64

Private node

NAT Environments (1/4)

nl

-

65

NAT Environments (1/4)

NAT Environments (1/4)

nl

-
Private node

67

Solutions for Communicating with Private Nodes (1/2)

e Relay communications to the private node using a public relay node.

68

Solutions for Communicating with Private Nodes (2/2)

e Use a NAT hole-punching algorithm to establish a direct connection to
the private node using a public rendezvous node.

=

)

e

|
- -

69

ﬁ

Relaying or Hole Punching?

e Relaying?
= Lower latency message exchange.

* Enables lower gossip cycle periods.
* Necessary in dynamic networks

e Hole punching?

= Decreases load on public nodes.

 But not if shuffle messages are small.

Gozar as a NAT-aware Peer Sampling Example

* In Gozar, each private node connects to one or more public nodes,
called partners that act as a relay or rendezvous server on behalf of
the private node.

e A node's descriptor consists of both its own address, its NAT type, and
its partners' addresses at the time of descriptor creation.

« When a node wants to gossip with a private node, it uses the partner
addresses in its descriptor to communicate with the private node.

71

Partnering (1/10)

Bootstrap server

ﬁ

Partnering (2/10)

Bootstrap server

ﬁ

Partnering (3/10)

Bootstrap server

ﬁ

Partnering (4/10)

Bootstrap server
nl

request » »@

n5

\ \
2
m‘.." n 4
reQUe;t.""""
=

H

ﬁ

Partnering (5/10)

Bootstrap server

Partnering (6/10)

Bootstrap server

Partnering (7/10)

Bootstrap server

Partnering (8/10)

Bootstrap server

Partnering (9/10)

Bootstrap server

Partnering (10/10)

Bootstrap server

respon

n4
G

Summary

Summary

e Epidemics algorithms are important technigue to solve problems in
dynamic large scale systems

= Scalable
= Simple

= Robust to node failures, message loss and transient network disruptions
(network partitions ...)

* Applications:
= Aggregation
= Membership management

= Topology management

83

Question

Acknowledgement
Some slides were derived from the slides of Alberto Montresor and Seif Haridi

84

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

