
1

Epidemic Algorithms

Slides by Amir H. Payberah (amir@sics.se), Jim Dowling

mailto:amir@sics.se

2

● Motivations
 Existing information dissemination protocols have scalability problems.

 Randomized protocols may have a smaller overhead.

 Trade­off between reliability and scalability.

● Can be applied
 To large­scale distributed systems (millions of nodes).

 When real­time information dissemination is not required.

Introduction

3

● Epidemics study the spread of a disease or infection in terms of populations
of infected/uninfected individuals and their rates of change.

● How does it work?

 Initially, a single individual is infective.

 Individuals get in touch with each other, spreading the update.

● Our goal is to spread the infection (update) as fast and completely as
possible!

Epidemic Protocols

4

● Anti­entropy

● Rumor mongering

Two Styles of Epidemic Protocols

5

● Each peer p periodically contacts a random partner q selected from the
current population.

● Then, p and q engage in an information exchange protocol, where updates
known to p but not to q are transferred from p to q (push), or vice­versa
(pull), or in both direction (push­pull).

Anti­entropy

6

● Peers are initially ignorant.

● When an update is learned by a peer, it becomes a hot rumor.

● While a peer holds a hot rumor, it periodically chooses a random peer from
the current population and sends (pushes) the rumor to it.

● Eventually, a node will lose interest in spreading the rumor.

Rumor Mongering

7

● Counter vs. Coin

 Counter: lose interest after k contacts.

 Coin (random): lose interest with probability 1/k.

● Feedback vs. Blind

 Feedback: lose interest only if the recipient knows the rumor.

 Blind: lose interest regardless of the recipient.

Rumor Mongering: Loss of Interest

8

● Participants’ load is independent of size

● Information spreads in log(system size) time.

%
 i
n
fe

ct
e
d

0.0

1.0

Time →

Epidemic Protocols Scale Very Nicely

9

● Aggregation protocols

● Membership management (Cyclon)

● Topology management (T­man)

● Etc.

Use of Epidemic Protocols

10

Aggregation Protocols

11

● Aggregation is a common name for a set of functions that provide an
estimate of some global system property.

● Aggregation functions enable local access to global information, in order to
simplify the task of controlling, monitoring, and optimizing distributed
applications.

● Some examples of aggregation functions:

 The average load of nodes in a distributed storage system.

 The sum of free space in a distributed storage system.

 The total number of nodes in a P2P system.

Aggregation Protocols

12

// timed event
 timer(T time units)
 q = SelectPeer()
 send S to q

// handle event
 recv Sp from p
 send S to p
 S = Update(S,Sp)

A Generic Aggregation Framework

// handle event
 recv Sq from q

 S = Update(S,Sq)

13

● Local state maintained by nodes:
 a real number representing the value to be averaged.

● selectPeer()
 performs a random selection among the set of current nodes.

● update(sp, sq)
 Avg: return (sp+sq)/2

 Max: return max(sp,sq)

Some Comments

14

16
4

36

8

10
2

Average Aggregation (1/5)

15

16
4

36

8

10
2

Average Aggregation (2/5)

16

16
4

36

8

6
6

(10 + 2) / 2 = 6

Average Aggregation (3/5)

17

16
4

36

8

6
6

Average Aggregation (4/5)

18

10
10

36

8

6
6

(16 + 4) / 2 = 10

Average Aggregation (5/5)

19

● If the graph is connected, each node converges to the average of the
original values.

● After each exchange the variance is reduced.

Some Comments

20

Illustration of Averaging

21

● Any ideas?

Network Size Estimation

22

● Any ideas?

● All nodes set their states to 0.

● The initiator sets its state to 1 and starts gossiping for the average.

● Eventually (after predefined k rounds) all nodes converge to the
avg=1/N.

Network Size Estimation

23

Membership Management

24

● In a gossip­based protocol, each node in the system periodically exchanges
information with a subset of peers.

● The choice of this subset is crucial.

● Ideally, the peers should be selected following a uniform random sample of
all nodes currently in the system.

Membership Management

25

● Each node may be assumed to know every other node in the system.

● However, providing each node with a complete membership table from
which a random sample can be drawn, is unrealistic in a large­scale
dynamic system.

Achieving a Uniform Random Sample

26

● Peer sampling

● Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

● Periodically refreshes the table using a gossiping procedure.

An Alternative Solution

27

// timed event every T time units
handle
 q = view.SelectPeer()
 buf = ((myAddress, 0))
 view.permute()
 move oldest H items to the end of view
 buf.append(view.head(c/2-1))
 send buf to q
 recv bufq from q
 view.select(c, H, S, bufq)
 view.increaseAge()

Peer Sampling Generic Framework (1/3)

28

// receiver handler
handle
 recv bufp from p
 buf = ((myAddress, 0))
 view.permute()
 move oldest H items to the end of view
 buf.append(view.head(c/2-1))
 send buf to p
 view.select(c, H, S, bufp)
 view.increaseAge()

Peer Sampling Generic Framework (2/3)

29

// view select method
method view.select(c, H, S, bufp)
 view.append(bufp)
 view.removeDuplicates()
 view.removeOldItems(min(H, view.size-c))
 view.removeHead(min(S, view.size-c))
 view.removeAtRandom(view.size-c)

Peer Sampling Generic Framework (3/3)

30

● Peer Selection
 Rand: uniform random

 Tail: highest age

● View Propagation
 Push

 Push­Pull

● View Selection
 Blind: H = 0, S = 0

 Healer: H = c / 2

 Swapper: H = 0, S = c / 2

Design Space

Peer Selection

View Propagation

View Selection

Rand

Tail

Push Push-Pull

Blin
d

Hea
le

r

Swap
pe

r

31

Gossip­based Peer Sampling Protocol (1/7)

n1
n2

n3

n4n5

n6n7

n8

n9

n10

n11

32

Gossip­based Peer Sampling Protocol (2/7)

n1
n2

n3

n4n5

n6n7

n8

n9

n10

n11

n8
n7
n10
n5

n1
n6
n3
n11

33

Gossip­based Peer Sampling Protocol (3/7)

n1
n2

n3

n4n5

n6n7

n8

n9

n10

n11

n8
n7
n10
n5

n1
n6
n3
n11

shuffle request

n8
n7

34

Gossip­based Peer Sampling Protocol (4/7)

n1
n2

n3

n4n5

n6n7

n8

n9

n10

n11

n8
n7
n10
n5

n1
n6
n3
n11

shuffle response

n1
n6

n8
n7

35

Gossip­based Peer Sampling Protocol (5/7)

n1
n2

n3

n4n5

n6n7

n8

n9

n10

n11

n8
n7
n10
n5

n1
n6
n3
n11

n1
n6

n8
n7

36

Gossip­based Peer Sampling Protocol (6/7)

n1
n2

n3

n4n5

n6n7

n8

n9

n10

n11

n8
n7
n10
n5

n1
n3
n6
n11

n1
n6

n8
n7

Update
State

Update
State

37

Gossip­based Peer Sampling Protocol (7/7)

n1
n2

n3

n4n5

n6
n7

n8

n9

n10

n11

n8
n7
n10
n5

n1
n3
n3
n11

n1
n6

n8
n7

38

● Peer Selection
 Rand: uniform random

 Tail: highest age

● View Propagation
 Push

 Push­Pull

● View Selection
 Blind: H = 0, S = 0

 Healer: H = c / 2

 Swapper: H = 0, S = c / 2

Newscast as a Peer Sampling Example

Peer Selection

View Propagation

View Selection

Rand

Tail

Push Push-Pull

Blin
d

Hea
le

r

Swap
pe

r

39

Newscast (1/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 12

Id, time
n1, 7
n3, 14
n6, 10

40

Newscast (2/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 12

● Pick a random peer from my view

Id, time
n1, 7
n3, 14
n6, 10

41

Newscast (3/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 12

● Pick a random peer from my view

● Send each other view + own fresh link

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n7, 9
n10, 16
n5, 12

Id, time
n11, 20

42

Newscast (4/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 12

● Pick a random peer from my view

● Send each other view + own fresh link

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n7, 9
n10, 16
n5, 12

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n11, 20

Id, time
n5, 20

43

Newscast (5/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 12

● Pick a random peer from my view

● Send each other view + own fresh link

● Keep c freshest links (remove own info and duplicates)

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n7, 9
n10, 16
n5, 12

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n11, 20

Id, time
n5, 20

44

Newscast (6/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 12

● Pick a random peer from my view

● Send each other view + own fresh link

● Keep c freshest links (remove own info and duplicates)

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n7, 9
n10, 16
n5, 12

Id, time
n1, 7
n3, 14
n6, 10

Id, time
n11, 20

Id, time
n5, 20

45

Newscast (7/7)

n1

n3

n5

n6n7

n10

n11
Id, time
n3, 14
n10, 16
n5, 20

● Pick a random peer from my view

● Send each other view + own fresh link

● Keep c freshest links (remove own info and duplicates)

Id, time
n3, 14
n10, 16
n11, 20

46

● Peer Selection
 Rand: uniform random

 Tail: highest age

● View Propagation
 Push

 Push­Pull

● View Selection
 Blind: H = 0, S = 0

 Healer: H = c / 2

 Swapper: H = 0, S = c / 2

Cyclon as a Peer Sampling Example

Peer Selection

View Propagation

View Selection

Rand

Tail

Push Push-Pull

Blin
d

Hea
le

r

Swap
pe

r

47

Cyclon (1/5)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 4

Id, time
n1, 7
n3, 14
n6, 10

48

Cyclon (2/5)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 4

Id, time
n1, 7
n3, 14
n6, 10

● Pick the oldest peer from my view and remove it from the view.

49

Cyclon (3/5)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16 Id, time

n1, 7
n3, 14
n6, 10

● Pick the oldest peer from my view and remove it from the view.

● Exchange some of the peers in neighbours (swap policy)

● The active peer sends its fresh address

Id, time
n10, 9
n11, 20

50

Cyclon (4/5)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16 Id, time

n1, 7
n3, 14
n6, 10

● Pick the oldest peer from my view and remove it from the view.

● Exchange some of the peers in neighbours (swap policy).

● The active peer sends its fresh address

Id, time
n10, 9
n11, 20

Id, time
n3, 14
n6, 10

51

Cyclon (5/5)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n3, 14
n6, 10

Id, time
n1, 7
n10, 9
n11, 20

● Pick the oldest peer from my view and remove it from the view.

● Exchange some of the peers in neighbours (swap policy).

● The active peer sends its fresh address

52

Cyclon Properties: Connectivity

● In a fail­free environment, no peer becomes disconnected in the
undirected graph.

● Pointers move, so peers change from being neighbor of one peer to
being the neighbor of another peer

53

Cyclon Properties: Convergence

● Starting from a state, where peers are connected in a chain.

● Convergence is defined by having the same average path length as a
random graph.

54

Cyclon Properties: Clustering Coefficient

● Clustering Coefficient (of a node): the ratio of existing links among the node’s
neighbors over the total number of possible links among them.

● Shows what percentage the neighbors of a node are also neighbors among
themselves.

55

Cyclon Properties: lndegree Distribution

56

Topology Management

57

T­Man

● T­man is a protocol that can construct and maintain any topology with
the help of a ranking function.

● The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node

58

// timed event every T time units
handle
 q = view.selectPeer()
 myDescriptor = (myAddress, myProfile)
 buf = merge(view, myDescriptor)
 buf = merge(buf, rnd.view)
 send buf to q
 recv bufq from q

 buf = merge(bufq,view)
 view = selectView(buf)

A Generic T­Man Framework (1/2)

59

// receiver handler
Handle

 recv bufp from p
 myDescriptor = (myAddress, myProfile)
 buf = merge(view, myDescriptor)
 buf = merge(buf, rnd.view)
 send buf to p
 buf = merge(bufp,view)
 view = selectView(buf)

A Generic T­Man Framework (2/2)

60

Some Comments

● SelectPeer
 Sort all nodes in the view based on ranking.
 Pick randomly one node from the first half.

● rnd.view
 provides a random sample of the nodes from the entire network, e.g.,

using cyclon

● SelectView
 Sort all nodes in buffer (about double size of the view)
 Pick out c highest ranked nodes.

61

Ranking Function

● Sample ranking functions:
 Line: d(a, b) = |a – b|
 Ring: d(a, b) = min(N ­ |a – b|, |a – b|)

62

Illustration of T­Man

63

Connectivity Problems
on the Open Internet

64

NAT Environments (1/4)

n1

n2
n3

n4

n5

n6

n7

n8

n9

n10

n11

Private node

Public node

shuffle request

65

NAT Environments (1/4)

n1

n2
n3

n4

n5

n6

n7

n8

n9

n10

n11

Private node

Public node

shuffle response

66

NAT Environments (1/4)

n1

n2
n3

n4

n5

n6

n7

n8

n9

n10

n11

Private node

Public node

shuffle response

Update
State

Update
State

67

NAT Environments (1/4)

n1

n2
n3

n4

n5

n6

n7

n8

n9

n10

n11

Private node

Public node

shuffle request

68

Solutions for Communicating with Private Nodes (1/2)

● Relay communications to the private node using a public relay node.

69

Solutions for Communicating with Private Nodes (2/2)

● Use a NAT hole­punching algorithm to establish a direct connection to
the private node using a public rendezvous node.

 70

Relaying or Hole Punching?

● Relaying?

 Lower latency message exchange.

• Enables lower gossip cycle periods.

• Necessary in dynamic networks

● Hole punching?

 Decreases load on public nodes.

• But not if shuffle messages are small.

 71

Gozar as a NAT­aware Peer Sampling Example

● In Gozar, each private node connects to one or more public nodes,
called partners that act as a relay or rendezvous server on behalf of
the private node.

● A node's descriptor consists of both its own address, its NAT type, and
its partners' addresses at the time of descriptor creation.

● When a node wants to gossip with a private node, it uses the partner
addresses in its descriptor to communicate with the private node.

72

Partnering (1/10)

Bootstrap server
n1n1

n2

n3

n4

n5

...

...

...

...

73

Partnering (2/10)

Bootstrap server
n1n1

n2

n3

n4

n5

...

...

...

...

74

Partnering (3/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

...

...

...

...

75

Partnering (4/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

request

request

...

...

...

...

76

Partnering (5/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

ACK

NACK

...

...

...

...

77

Partnering (6/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

...

...

...

...

78

Partnering (7/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

Shuffle exchange

n2, private, n1
...

...

...

...

79

Partnering (8/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

Shuffle
exchange

n2, private, n1
...

n2, private, n1
...

...

...

80

Partnering (9/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

Shuffle
request

n2, private, n1
...

n2, private, n1
...

...

...

81

Partnering (10/10)

Bootstrap server
n1n1

n2

n3

n4

n5
n1, public, null
n4, public, null
...

Shuffle
response

n2, private, n1
...

n2, private, n1
...

...

...

82

Summary

 83

Summary

● Epidemics algorithms are important technique to solve problems in
dynamic large scale systems

 Scalable

 Simple

 Robust to node failures, message loss and transient network disruptions
(network partitions …)

● Applications:

 Aggregation

 Membership management

 Topology management

84

Question

Acknowledgement
Some slides were derived from the slides of Alberto Montresor and Seif Haridi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

