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Introduction

* Motivations

= Existing information dissemination protocols have scalability problems.
= Randomized protocols may have a smaller overhead.

= Trade-off between reliability and scalability.

e Can be applied

= To large-scale distributed systems (millions of nodes).

= When real-time information dissemination is not required.



Epidemic Protocols

* Epidemics study the spread of a disease or infection in terms of populations
of infected/uninfected individuals and their rates of change.

 How does it work?

= [nitially, a single individual is infective.

= Individuals get in touch with each other, spreading the update.

e Qur goal is to spread the infection (update) as fast and completely as
possible!
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Two Styles of Epidemic Protocols

e Anti-entropy

e Rumor mongering




Anti-entropy

* Each peer p periodically contacts a random partner q selected from the
current population.

* Then, p and g engage in an information exchange protocol, where updates
known to p but not to g are transferred from p to g (push), or vice-versa
(pull), or in both direction (push-pull).



Rumor Mongering

e Peers are initially ignorant.

 When an update is learned by a peer, it becomes a hot rumor.

e While a peer holds a hot rumor, it periodically chooses a random peer from
the current population and sends (pushes) the rumor to it.

e Eventually, a node will lose interest in spreading the rumor.



Rumor Mongering: Loss of Interest
e Counter vs. Coin

= Counter: lose interest after k contacts.

= Coin (random): lose interest with probability 1/k.

 Feedback vs. Blind

= Feedback: lose interest only if the recipient knows the rumor.

= Blind: lose interest regardless of the recipient.



Epidemic Protocols Scale Very Nicely

e Participants’ load is independent of size

 Information spreads in log(system size) time.
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Use of Epidemic Protocols

e Aggregation protocols

* Membership management (Cyclon)

* Topology management (T-man)

» Etc.




Aggregation Protocols



Aggregation Protocols

e Aggregation is a common name for a set of functions that provide an
estimate of some global system property.

* Aggregation functions enable local access to global information, in order to
simplify the task of controlling, monitoring, and optimizing distributed
applications.

* Some examples of aggregation functions:

= The average load of nodes in a distributed storage system.
= The sum of free space in a distributed storage system.

= The total number of nodes in a P2P system.
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A Generic Aggregation Framework

// timed event
timer (T time units)
g = SelectPeer()

send S to q
\\\\\\\\\\\‘// handle event

recv S, from p
send S to p

S = Update(s,S,)
// handle event

recv S, from ¢
S = Update(s,S,)
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Some Comments

 Local state maintained by nodes:

= a real number representing the value to be averaged.

 selectPeer()

= performs a random selection among the set of current nodes.

e update(sp, sq)
= Avg: return (sp+sq)/2

= Max: return max(sp,sq)
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Average Aggregation (1/5)
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Average Aggregation (2/5)




(10+2)/2=6
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Average Aggregation (4/5)




(16 +4) /2 =10
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Some Comments

e If the graph is connected, each node converges to the average of the
original values.

 After each exchange the variance is reduced.
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lllustration of Averaging
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Network Size Estimation

e Any ideas?




Network Size Estimation
e Any ideas?
* All nodes set their states to 0.

e The initiator sets its state to 1 and starts gossiping for the average.

* Eventually (after predefined k rounds) all nodes converge to the
avg=1/N.
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Membership Management



Membership Management

 In a gossip-based protocol, each node in the system periodically exchanges
information with a subset of peers.

* The choice of this subset is crucial.

 |deally, the peers should be selected following a uniform random sample of
all nodes currently in the system.
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Achieving a Uniform Random Sample

* Each node may be assumed to know every other node in the system.

* However, providing each node with a complete membership table from
which a random sample can be drawn, is unrealistic in a large-scale
dynamic system.
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An Alternative Solution

* Peer sampling

e Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

e Periodically refreshes the table using a gossiping procedure.
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Peer Sampling Generic Framework (1/3)

// timed event every T time units
handle
g = view.SelectPeer()
buf = ((myAddress, 0))
view.permute()
move oldest H items to the end of view
buf.append(view.head(c/2-1))
send buf to q
recv buf, from ¢
view.select(c, H, S, buf))
view.1increaseAge()
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Peer Sampling Generic Framework (2/3)

// receiver handler
handle
recv buf, from p
buf = ((myAddress, 0))

view.permute()
move oldest H items to the end of view

buf.append(view.head(c/2-1))
send buf to p

view.select(c, H, S, buf))
view.1lncreaseAge()
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Peer Sampling Generic Framework (3/3)

// view select method
method view.select(c, H, S, buf))

view.

view.
view.

view

append (buf))
removeDuplicates()
removeOldItems(min(H, view.size-c))

.removeHead(min(S, view.size-c))
view.

removeAtRandom(view.size-c)
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Designh Space

» Peer Selection

= Rand: uniform random Peer ASelection
= Tail: highest age
— Tall
* View Propagation
—1— Rand
= Push
= Push-Pull & |
N |
\é Push
\2@)
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- Blind:H=0,S=0
= HealerrH=c/2 View Selection

= Swapper:H=0,S=c/2

\
Push-Pull

» VView Propagation
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Gossip-based Peer Sampling Protocol (1/7)
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Gossip-based Peer Sampling Protocol (2/7)




Gossip-based Peer Sampling Protocol (3/7)
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Gossip-based Peer Sampling Protocol (4/7)
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Gossip-based Peer Sampling Protocol (5/7)
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Gossip-based Peer Sampling Protocol (6/7)
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Gossip-based Peer Sampling Protocol (7/7)
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Newscast as a Peer Sampling Example

» Peer Selection

= Rand: uniform random Peer ASelection
= Tail: highest age
—— Tail
* View Propagation
—1— Rand
= Push
© Push-Pul Q}\\Qb } } » VView Propagation
& Push  Push-Pull
&
« View Selection &

= Blind:H=0,S=0
= HealerrH=c/2 View Selection

= Swapper:H=0,S=c/2
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Newscast (1/7)
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Newscast (2/7)

nl1l0

e Pick a random peer from my view

H



Newscast (3/7)

e Pick a random peer from my view

 Send each other view + own fresh link
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Newscast (4/7)

e Pick a random peer from my view

 Send each other view + own fresh link
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Newscast (5/7)

e Pick a random peer from my view
« Send each other view + own fresh link

e Keep c freshest links (remove own info and duplicates)
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Newscast (6/7)

nl1l0

e Pick a random peer from my view
« Send each other view + own fresh link

e Keep c freshest links (remove own info and duplicates)
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Newscast (7/7)

nv né
=

e Pick a random peer from my view
« Send each other view + own fresh link

e Keep c freshest links (remove own info and duplicates)
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Cyclon as a Peer Sampling Example

» Peer Selection

= Rand: uniform random Peer ASelection
= Tail: highest age
—— Tall
* View Propagation
—— Rand
= Push
© Push-Pul Q}\&b } } » \View Propagation
& Push  Push-Pull
&
« View Selection <&

= Blind:H=0,S=0
= HealerrH=c¢c/2 View Selection

= Swapper:H=0,S=c/2
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Cyclon (1/5)




Cyclon (2/5)
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e Pick the oldest peer from my view and remove it from the view.
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Cyclon (3/5)
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e Pick the oldest peer from my view and remove it from the view.

e Exchange some of the peers in neighbours (swap policy)

e The active peer sends its fresh address
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Cyclon (4/5)

)

e Pick the oldest peer from my view and remove it from the view.

e Exchange some of the peers in neighbours (swap policy).

e The active peer sends its fresh address
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Cyclon (5/5)

* Pick the oldest peer from my view and remove it from the view.

e Exchange some of the peers in neighbours (swap policy).

e The active peer sends its fresh address
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Cyclon Properties:

* In a fail-free environment, no peer becomes disconnected in the
undirected graph.

* Pointers move, so peers change from being neighbor of one peer to
being the neighbor of another peer
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Cyclon Properties:

* Starting from a state, where peers are connected in a chain.

* Convergence is defined by having the same average path length as a
random graph.
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Cyclon Properties:

* Clustering Coefficient (of a node): the ratio of existing links among the node’s
neighbors over the total number of possible links among them.

* Shows what percentage the neighbors of a node are also neighbors among
themselves.

c=20 — + -
C=50 - - --
rand. graph c=20 — — -

© rand. graph c=50 ------

] 0.1 }

= k!

g 5

]

= kY

2 0.01 } 3

: \

g kY

s 3

B 0001 e R

o

0.0001

0 20 40 60 80 1060 120 140

54



Cyclon Properties: Indegree Distribution

number of nodes
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Topology Management



T-Man

e T-man is a protocol that can construct and maintain any topology with
the help of a ranking function.

e The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node
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A Generic T-Man Framework (1/2)

// timed event every T time units
handle
g = view.selectPeer()
myDescriptor = (myAddress, myProfile)
buf = merge(view, myDescriptor)
buf = merge(buf, rnd.view)
send buf to q
recv buf, from q

buf = merge(buf,, view)
view = selectView(buf)

58



A Generic T-Man Framework (2/2)

// receiver handler

Handle

recv buf, from p

myDescriptor = (myAddress, myProfile)
buf = merge(view, myDescriptor)

buf

merge(buf, rnd.view)

send buf to p
buf = merge(buf,, view)

view

= selectView(buf)
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Some Comments

* SelectPeer

= Sort all nodes in the view based on ranking.

= Pick randomly one node from the first half.

* rnd.view

= provides a random sample of the nodes from the entire network, e.g.,
using cyclon

* SelectView

= Sort all nodes in buffer (about double size of the view)

= Pick out ¢ highest ranked nodes.
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Ranking Function

* Sample ranking functions:
= Line: d(a, b) = |]a—b]
= Ring: d(a, b) = min(N - |a —b|, |a —b|)




after 8 cycles
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Connectivity Problems
on the Open Internet



Private node

NAT Environments (1/4)
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Private node

NAT Environments (1/4)
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NAT Environments (1/4)




NAT Environments (1/4)
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Solutions for Communicating with Private Nodes (1/2)

e Relay communications to the private node using a public relay node.
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Solutions for Communicating with Private Nodes (2/2)

e Use a NAT hole-punching algorithm to establish a direct connection to
the private node using a public rendezvous node.
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Relaying or Hole Punching?

e Relaying?
= Lower latency message exchange.

* Enables lower gossip cycle periods.
* Necessary in dynamic networks

e Hole punching?

= Decreases load on public nodes.

 But not if shuffle messages are small.




Gozar as a NAT-aware Peer Sampling Example

* In Gozar, each private node connects to one or more public nodes,
called partners that act as a relay or rendezvous server on behalf of
the private node.

e A node's descriptor consists of both its own address, its NAT type, and
its partners' addresses at the time of descriptor creation.

« When a node wants to gossip with a private node, it uses the partner
addresses in its descriptor to communicate with the private node.
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Partnering (1/10)

Bootstrap server
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Partnering (2/10)

Bootstrap server
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Partnering (3/10)

Bootstrap server
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Partnering (4/10)

Bootstrap server
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Partnering (5/10)

Bootstrap server




Partnering (6/10)

Bootstrap server




Partnering (7/10)

Bootstrap server




Partnering (8/10)

Bootstrap server




Partnering (9/10)

Bootstrap server




Partnering (10/10)

Bootstrap server
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Summary




Summary

e Epidemics algorithms are important technigue to solve problems in
dynamic large scale systems

= Scalable
= Simple

= Robust to node failures, message loss and transient network disruptions
(network partitions ... )

* Applications:
= Aggregation
= Membership management

= Topology management
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Question
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