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● Motivations
 Existing information dissemination protocols have scalability problems.

 Randomized protocols may have a smaller overhead.

 Trade­off between reliability and scalability.

● Can be applied
 To large­scale distributed systems (millions of nodes).

 When real­time information dissemination is not required.

Introduction
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● Epidemics study the spread of a disease or infection in terms of populations 
of infected/uninfected individuals and their rates of change.

● How does it work?

 Initially, a single individual is infective.

 Individuals get in touch with each other, spreading the update.

● Our goal is to spread the infection (update) as fast and completely as 
possible!

Epidemic Protocols
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● Anti­entropy

● Rumor mongering

Two Styles of Epidemic Protocols



5

● Each peer p periodically contacts a random partner q selected from the 
current population.

● Then, p and q engage in an information exchange protocol, where updates 
known to p but not to q are transferred from p to q (push), or vice­versa 
(pull), or in both direction (push­pull).

Anti­entropy
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● Peers are initially ignorant.

● When an update is learned by a peer, it becomes a hot rumor.

● While a peer holds a hot rumor, it periodically chooses a random peer from 
the current population and sends (pushes) the rumor to it.

● Eventually, a node will lose interest in spreading the rumor.

Rumor Mongering
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● Counter vs. Coin

 Counter: lose interest after k contacts.

 Coin (random): lose interest with probability 1/k.

● Feedback vs. Blind

 Feedback: lose interest only if the recipient knows the rumor.

 Blind: lose interest regardless of the recipient.

Rumor Mongering: Loss of Interest
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● Participants’ load is independent of size

● Information spreads in log(system size) time.
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Epidemic Protocols Scale Very Nicely
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● Aggregation protocols

● Membership management (Cyclon)

● Topology management (T­man)

● Etc.

Use of Epidemic Protocols
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Aggregation Protocols
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● Aggregation is a common name for a set of functions that provide an 
estimate of some global system property. 

● Aggregation functions enable local access to global information, in order to 
simplify the task of controlling, monitoring, and optimizing distributed 
applications. 

● Some examples of aggregation functions:

 The average load of nodes in a distributed storage system.

 The sum of free space in a distributed storage system.

 The total number of nodes in a P2P system.

Aggregation Protocols 
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// timed event 
    timer(T time units)
    q = SelectPeer()
    send S to q

// handle event
    recv Sp from p
    send S to p
    S = Update(S,Sp)

A Generic Aggregation Framework

// handle event
    recv Sq from q

    S = Update(S,Sq)
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● Local state maintained by nodes: 
 a real number representing the value to be averaged.

● selectPeer()
 performs a random selection among the set of current nodes.

● update(sp, sq)
 Avg: return (sp+sq)/2

 Max: return max(sp,sq)

Some Comments
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● If the graph is connected, each node converges to the average of the 
original values.

● After each exchange the variance is reduced.

Some Comments
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Illustration of Averaging
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● Any ideas?

Network Size Estimation
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● Any ideas?

● All nodes set their states to 0.

● The initiator sets its state to 1 and starts gossiping for the average.

● Eventually (after predefined k rounds) all nodes converge to the 
avg=1/N.

Network Size Estimation
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Membership Management
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● In a gossip­based protocol, each node in the system periodically exchanges 
information with a subset of peers.

● The choice of this subset is crucial.

● Ideally, the peers should be selected following a uniform random sample of 
all nodes currently in the system.

Membership Management
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● Each node may be assumed to know every other node in the system.

● However, providing each node with a complete membership table from 
which a random sample can be drawn, is unrealistic in a large­scale 
dynamic system.

Achieving a Uniform Random Sample
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● Peer sampling

● Every node maintains a relatively small local membership table that 
provides a partial view on the complete set of nodes.

● Periodically refreshes the table using a gossiping procedure.

An Alternative Solution
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// timed event every T time units
handle
    q = view.SelectPeer()
    buf = ((myAddress, 0))
    view.permute()
    move oldest H items to the end of view 
    buf.append(view.head(c/2-1)) 
    send buf to q
    recv bufq from q
    view.select(c, H, S, bufq)
    view.increaseAge()

Peer Sampling Generic Framework (1/3)
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// receiver handler 
handle
    recv bufp from p
    buf = ((myAddress, 0))
    view.permute()
    move oldest H items to the end of view 
    buf.append(view.head(c/2-1)) 
    send buf to p
    view.select(c, H, S, bufp)
    view.increaseAge()

Peer Sampling Generic Framework (2/3)
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// view select method
method view.select(c, H, S, bufp)
    view.append(bufp)
    view.removeDuplicates()
    view.removeOldItems(min(H, view.size-c))
    view.removeHead(min(S, view.size-c))
    view.removeAtRandom(view.size-c)

Peer Sampling Generic Framework (3/3)
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● Peer Selection
 Rand: uniform random

 Tail: highest age

● View Propagation
 Push

 Push­Pull

● View Selection
 Blind: H = 0, S = 0

 Healer: H = c / 2

 Swapper: H = 0, S = c / 2

Design Space

Peer Selection

View Propagation

View Selection

Rand
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Gossip­based Peer Sampling Protocol (1/7)
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Gossip­based Peer Sampling Protocol (2/7)
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Gossip­based Peer Sampling Protocol (3/7)
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Gossip­based Peer Sampling Protocol (4/7)
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Gossip­based Peer Sampling Protocol (5/7)
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Gossip­based Peer Sampling Protocol (6/7)
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Gossip­based Peer Sampling Protocol (7/7)
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● Peer Selection
 Rand: uniform random

 Tail: highest age

● View Propagation
 Push

 Push­Pull

● View Selection
 Blind: H = 0, S = 0

 Healer: H = c / 2

 Swapper: H = 0, S = c / 2

Newscast as a Peer Sampling Example
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Newscast (1/7)
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Newscast (2/7)
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Newscast (3/7)
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Newscast (4/7)
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Newscast (5/7)
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Newscast (6/7)
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Newscast (7/7)
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● Peer Selection
 Rand: uniform random

 Tail: highest age

● View Propagation
 Push

 Push­Pull

● View Selection
 Blind: H = 0, S = 0

 Healer: H = c / 2

 Swapper: H = 0, S = c / 2

Cyclon as a Peer Sampling Example
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Cyclon (1/5)

n1

n3

n5

n6n7

n10

n11
Id, time
n7, 9
n10, 16
n5, 4

Id, time
n1, 7
n3, 14
n6, 10



48

Cyclon (2/5)
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● Pick the oldest peer from my view and remove it from the view.
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Cyclon (3/5)
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Cyclon (4/5)
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Cyclon (5/5)
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Cyclon Properties: Connectivity

● In a fail­free environment, no peer becomes disconnected in the 
undirected graph.

● Pointers move, so peers change from being neighbor of one peer to 
being the neighbor of another peer
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Cyclon Properties: Convergence

● Starting from a state, where peers are connected in a chain.

● Convergence is defined by having the same average path length as a 
random graph.
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Cyclon Properties: Clustering Coefficient

● Clustering Coefficient (of a node): the ratio of existing links among the node’s 
neighbors over the total number of possible links among them.

● Shows what percentage the neighbors of a node are also neighbors among 
themselves.
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Cyclon Properties: lndegree Distribution
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Topology Management
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T­Man

● T­man is a protocol that can construct and maintain any topology with 
the help of a ranking function.

● The ranking function orders any set of nodes according to their 
desirability to be neighbors of a given node
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// timed event every T time units
handle
    q = view.selectPeer()
    myDescriptor = (myAddress, myProfile)
    buf = merge(view, myDescriptor)     
    buf = merge(buf, rnd.view) 
    send buf to q
    recv bufq from q

    buf = merge(bufq,view)
    view = selectView(buf)

A Generic T­Man Framework (1/2)
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// receiver handler
Handle

 recv bufp from p    
    myDescriptor = (myAddress, myProfile)
    buf = merge(view, myDescriptor)
    buf = merge(buf, rnd.view) 
    send buf to p
    buf = merge(bufp,view)
    view = selectView(buf)

A Generic T­Man Framework (2/2)
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Some Comments

● SelectPeer
 Sort all nodes in the view based on ranking.
 Pick randomly one node from the first half.

● rnd.view
 provides a random sample of the nodes from the entire network, e.g., 

using cyclon

● SelectView
 Sort all nodes in buffer (about double size of the view)
 Pick out c highest ranked nodes.
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Ranking Function

● Sample ranking functions:
 Line: d(a, b) = |a – b|
 Ring: d(a, b) = min(N ­ |a – b|, |a – b|)
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Illustration of T­Man
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Connectivity Problems
on the Open Internet
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NAT Environments (1/4)
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NAT Environments (1/4)
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NAT Environments (1/4)
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NAT Environments (1/4)
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Solutions for Communicating with Private Nodes (1/2)

● Relay communications to the private node using a public relay node.
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Solutions for Communicating with Private Nodes (2/2)

● Use a NAT hole­punching algorithm to establish a direct connection to 
the private node using a public rendezvous node.
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Relaying or Hole Punching?

● Relaying?

 Lower latency message exchange.

• Enables lower gossip cycle periods. 

• Necessary in dynamic networks

● Hole punching?

 Decreases load on public nodes.

• But not if shuffle messages are small.
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Gozar as a NAT­aware Peer Sampling Example

● In Gozar, each private node connects to one or more public nodes, 
called partners that act as a relay or rendezvous server on behalf of 
the private node.

● A node's descriptor consists of both its own address, its NAT type, and 
its partners' addresses at the time of descriptor creation.

● When a node wants to gossip with a private node, it uses the partner 
addresses in its descriptor to communicate with the private node.
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Partnering (1/10)
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Partnering (2/10)
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Partnering (3/10)
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Partnering (4/10)
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Partnering (5/10)
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Partnering (6/10)
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Partnering (7/10)
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Partnering (8/10)
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Partnering (9/10)
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Partnering (10/10)

Bootstrap server
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Summary
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Summary

● Epidemics algorithms are important technique to solve problems in 
dynamic large scale systems

 Scalable

 Simple

 Robust to node failures, message loss and transient network disruptions 
(network partitions … )

● Applications:

 Aggregation

 Membership management

 Topology management
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Question
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