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Consistent Hashing

* Imagine we want to store information about books on 4 nodes (servers).

= Use the ISBN to identify each book.
* We could use one of the nodes as a central directory server

e But, with the hash of the ISBN, we don't need a central server:
switch (SHA-1(ISBN) mod 4) {
case 0: // store on nodel
case 1: // store on node2
case 2. // store on node3
case 3: // store on node4

}

* Qur store gets bigger......we need to add more 2 nodes.
= We now have to re-calculate where all the books are stored.

* Do the books stay on the same nodes?
* The only books stored on the same node as before are those where
SHA-1(ISBN) mod 4 == SHA-1(ISBN) mod 6
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Consistent Hashing

* Consistent hashing allows you to add more nodes and only a small
minority of books will have to move to new nodes.

» Key property: low cost hash-table expansion. That is, a book's
hash key is independent of the number of books and independent

of the number of nodes.
= |f you add or remove nodes or books, a book's hash key remains the same.

* Mechanism: hash something constant at each node
= E.9., a node's MAC address

See: Karger et. Al, "Consistent Hashing and Random Trees...”
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Consistent Hashing

e Each node is responsible for all books with hash keys between its
own hash key and the hash key of the next node (going upwards).

* Imagine we have books with SHA-1(ISBN) in a range 0..16

* For node1..node4, the nodes' hash keys are:
= {nodel-0, node2-6, node3-1l1l, node4-16}

* So, a book with SHA-1(ISBN) — 1 would be stored at node1.
= (nodel) 0 < 1 (book) < 6 (node2)

* Now if we add new nodes positions 4 and 8, respectively:
= Nodes have hash keys: {0, 4, 6, 8, 11, 16}

* Fewer books need to be moved
= Books with hash keys (6..7) get moved from node2 to the first new node
= Books with hash keys (8..10) get moved from node3 to the second new node
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Recap




Distributed Hash Tables (DHT)

e An ordinary hash-table, which is ...
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Distributed Hash Tables (DHT)

* An ordinary hash-table, which is distributed.

Fatemeh | Stockholm

Sarunas Lausanne

Tallat Islamabad

Cosmin Bucharest
Seif Stockholm

Amir Tehran
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Distributed Hash Tables (DHT)

Decide on a common key space
for nodes and values
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Connect nodes using a
small, bounded number
of links s.t. max hop
count is minimized

e Define a strategy for
assigning items to

nodes
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Chord an Example of DHT




o How to Construct a DHT (Chord)?

* Use alogical name space, called the identifier space, consisting of identifiers
{0,1,2,..., N-1}

* |dentifier space is a logical ring modulo N.
14

13

12
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How to Construct a DHT (Chord)?

* Use alogical name space, called the identifier space, consisting of identifiers
{0,1,2,..., N-1}

* |dentifier space is a logical ring modulo N.

* Every node picks a random identifier
though Hash H.

14

13

* Example:
= Space N=16 {0,...,15} 12 4
" Five nodes a, b, ¢, d, e
" H(a) =6
= H(b) =5
" H(c) =0
= H(d) =11
" H(e) =2
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2 Successor ...

* The successor of an identifier
is the first node met going in
clockwise direction starting at 15 1

the identifier.
14

13 3

12
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2 Successor ...

* The successor of an identifier
is the first node met going in
clockwise direction starting at 15 1
the identifier.

14
® succ(x): is the first node on the 13
ring with id greater than or 3
equal x.
" Succ(12) = 12 4
" Succ(1) = 2
" Succ(6) =6
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2 Connect the Nodes

* Each node points to its

SuUcCcessor.
" The successor of anode nis
succ(n+1).
0’s successor is succ(
2’s successor is succ(
5’'s successor is succ(
6’S successor is succ(
11’s successor is succ(
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3 Where to Store Data?

* Use globally known hash function, H.

* Each item <key,value> gets identifier
H(key) = k.

=12
"Cosmin") = 2
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3 Where to Store Data?

* Use globally known hash function, H.

* Each item <key,value> gets identifier
H(key) = k.

=12
"Cosmin") = 2
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3 Where to Store Data?

» Use globally known hash function, H.

e Each item <key,value> gets identifier
H(key) = k.

= H("Fatemeh") =12

= H("Cosmin") =2

= H("Seif") =9

[ H(

] H(
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3 Where to Store Data?

» Use globally known hash function, H.

e Each item <key,value> gets identifier
H(key) = k.

"Fatemeh") = 12
"Cosmin") = 2

[ H(
[ H(
= H("Seif") =9
[ H(
[ H(

18/73



Lookup?




Lookup?

* To lookup a key k
= Calculate H(k)
= Follow succ pointers until item k is found

Sarunas
Fatemeh



Lookup?

* To lookup a key k
= Calculate H(k)
= Follow succ pointers until item k is found

* Example
= Lookup "Seif" at node 2
= H("Seif")=9

" Traverse nodes:
* 2,5,6,11 (BINGO)
= Return "Stockholm" to initiator

Seif Stockholm

Sarunas
Fatemeh



Lookup?

// ask node n to find the successor of id
procedure n.findSuccessor(id) {
if (predecessor # nil and id [ (predecessor, n]) then return n
else if (id [I(n, successor]) then
return successor
else // forward the query around the circle
return successor.findSuccessor(id)

* (a, b] the segment of the ring moving clockwise from but not including a until and including b.
* n.foo(.) denotes an RPC of foo(.) to node n.

e n.bar denotes and RPC to fetch the value of the variable bar in node n.
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Put and Get

procedure n.put(id, value) {
s = findSuccessor(id)
s.store(id, value)

}

procedure n.get(id) {
s = findSuccessor(id)
return s.retrieve(id)

}

* PUT and GET are nothing but lookups!!
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How can we improve this?
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Cost of Lookup Operations

* |f only the pointer to succ(n+1) is used
= Worst case lookup time is O(N), for N nodes
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Speeding up Lookups

* Finger/routing table:
Point to succ(n+1)
= Point to succ(n+2)
= Point to succ(n+4)
= Point to succ(n+8)

Point to succ(n+2")

* Distance always halved to the
destination.
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Speeding up Lookups

* Size of routing tables is logarithmic.:
= Routing table size: M, where N = 2"M.

* Every node n knows
successor(n + 27(i-1))
fori=1...M

13
 Routing entries = log (N)
= log,(N) hops from any node to 12
any other node

» Example: Log,(1000000)=20
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DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {
if (predecessor # nil and id [ (predecessor, n]) then return n
else if (id [I(n, successor]) then
return successor
else // forward the query around the circle
return successor.findSuccessor(id)
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DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {
If (predecessor # nil and id [ (predecessor, n]) then return n
else if (id [I(n, successor]) then
return successor
else // forward the query around the circle
return sucdgssor.findSuccessor(id)

closestPrecedingNode(id)
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DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {
if (predecessor # nil and id [ (predecessor, n]) then return n
else if (id [(n, successor]) then
return successor
else { // forward the query around the circle
m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
}

// search locally for the highest predecessor of id
procedure closestPrecedingNode(id) {
fori = m downto 1 do {
if (finger[i] O(n, id)) then
return finger(i]

}

return n

30/73



Chord — Lookup (1/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id O (predecessor, n]) then return n
else if (id [J(n, successor]) then
return successor
else { // forward the query around the circle

m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
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Chord — Lookup (1/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id [0 (predecessor, n]) then return n
else if (id O(n, successor]) then
return successor
else { // forward the query around the circle
m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
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Chord — Lookup (2/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id [0 (predecessor, n]) then return n
else if (id [J(n, successor]) then
return successor
else { // forward the query around the circle

m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
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Chord — Lookup (2/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id [0 (predecessor, n]) then return n
else if (id O(n, successor]) then
return successor
else { // forward the query around the circle
m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
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Chord — Lookup (3/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id [0 (predecessor, n]) then return n
else if (id [J(n, successor]) then
return successor
else { // forward the query around the circle
m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
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Chord — Lookup (3/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id [ (predecessor, n]) then return n
else if (id [J(n, successor]) then
return successor
else { // forward the query around the circle
m := closestPrecedingNode(id)
return m.findSuccessor(id)

}

13

12

11
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Chord — Lookup (4/4)

procedure n.findSuccessor(id) {
if (predecessor # nil and id [J (predecessor, n]) then return n

else if (id 0J(n, successor]) then
return successor
else { // forward the query around the circle

m := closestPrecedingNode(id)
return m.findSuccessor(id)

}
} 2

13

12

11
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Discussion

* We are basically done.
* But ...

* What about joins and failures/leaves?
= Nodes come and go as they wish.

e What about data?

= Should I lose my doc because some kid decided to shut down his machine
and he happened to store my file?

* So actually we just started ...
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Handling Dynamism?
Ring Maintenance?
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Handling Dynamism - Ring Maintenance

* Everything depends on successor pointers.

* In Chord, in addition to the successor pointer, every node has a

predecessor pointer as well for ring maintenance.
" Predecessor of node n is the first node met in anti-clockwise direction
starting at n-1.
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Handling Dynamism - Ring Maintenance

* Periodic stabilization is used to make pointers eventually correct.
= Try pointing succ to closest alive successor.
= Try pointing pred to closest alive predecessor.

14

13

12
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Handling Dynamism - Ring Maintenance

* Periodic stabilization is used to make pointers eventually correct.

= Try pointing succ to closest alive successor.
= Try pointing pred to closest alive predecessor. 15

// Periodically at n: 14

V ;= succ.pred

if (v #niland v O (n,succ]) then 13 3
set succ =v

send a notify(n) to succ 12
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Handling Dynamism - Ring Maintenance

* Periodic stabilization is used to make pointers eventually correct.
= Try pointing succ to closest alive successor.
= Try pointing pred to closest alive predecessor.

15
// Periodically at n: 14
V ;= succ.pred
if (v #niland v O (n,succ]) then 13

set succ =v

send a notify(n) to succ 12

// When receiving notify(p) at n:
if (ored = nil or p O (pred, n]) then
set pred :=p
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Handling Join?




Chord — Handling Join (1/5)

* When n joins:
= Find n’s successor with lookup(n)

= Set succ to n’s successor
= Stabilization fixes the rest

// Periodically at n:
V ;= succ.pred

if (v #nil and v O (n,succ]) then
set succ :=v
send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p O (pred, n]) then
setpred :=p
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Chord — Handling Join (2/5)

* When n joins:
= Find n’s successor with lookup(n)

= Set succ to n’s successor
= Stabilization fixes the rest

// Periodically at n:
V ;= succ.pred

if (v #nil and v O (n,succ]) then
set succ :=v
send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p O (pred, n]) then
setpred :=p
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Chord — Handling Join (3/5)

* When n joins:
= Find n’s successor with lookup(n)

= Set succ to n’s successor
= Stabilization fixes the rest

// Periodically at n:
V := succ.pred

if (v #nil and v O (n,succ]) then
set succ :=v
send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p U (pred, n]) then
setpred =p
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Chord — Handling Join (4/5)

* When n joins:
= Find n’s successor with lookup(n)

= Set succ to n’s successor
= Stabilization fixes the rest

// Periodically at n:
V := succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p U (pred, n]) then
setpred =p
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Chord — Handling Join (5/5)

* When n joins:
= Find n’s successor with lookup(n)

= Set succ to n’s successor
= Stabilization fixes the rest

// Periodically at n:
V ;= succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p O (pred, n]) then
setpred :=p
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Fixing Fingers




Chord - Fixing Fingers

* Periodically refresh finger table entries, and store the index of the
next finger to fix.

* Local variable next initially is O.

// When receiving notify(p) at n:
procedure n.fixFingers() {
next ;= next+1
if (next > m) then
next ;= 1

finger[next] := findSuccessor(n LI 2*(next - 1))

}
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Chord - Fixing Fingers (1/4)

* Current situation: succ(N48) is N60.
* Succ(21L] 27(6-1)) = Succ(53) = N60.

e 2100 2(6-1) = 53

N21.finger_.node
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Chord - Fixing Fingers (2/4)

* Succ(210 27(6-1)) = Succ(53) = ?

* New node N56 joins and stabilizes successor pointer.

* Finger 6 of node N21 is wrong now.

* N21 eventually try to fix finger 6 by looking up 53 which stops at N48, however
and nothing changes.

2100 20(6-1) = 53

N21.finger_.node
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Chord - Fixing Fingers (3/4)

* Succ(210 27(6-1)) = Succ(53) = ?
* N48 will eventually stabilize its successor.
* This means the ring is correct now.

v, 2100 27(6-1) = 53 N21.finger .node
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Chord - Fixing Fingers (4/4)

* Succ(210 27(6-1)) = Succ(53) = N56
* When N21 tries to fix Finger 6 again, this time the response from N48 will be
correct and N21 corrects the finger.

o, 210 2M\(6-1) = 53 N21 .finger6.node
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Handling Failure?
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Successor List

* A node has a successors list of size r containing the immediate r

SUCCESSOrS
= succ(n+1)
= succ(succ(n+1)+1)
= succ(succ(succ(n+1)+1)+1)

* How big should r be?
= log(N)
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Successor List ...

// join a Chord ring containing node m
procedure n.join(m) {

pred := nil

Succ := m.findSuccessor(n)
updateSuccesorList(succ.successorList)

}

// Periodically at n
procedure n.stabilize() {
succ := find first alive node in successor list
V = succ.pred
if (v #nil and v O (n,succ]) then
set succ =V
send a notify(n) to succ
updateSuccessorList(succ.successorList)

}
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Dealing with Failures

e Periodic stabilization

* If successor fails
= Replace with closest alive successor 14

* |[f predecessor fails 13

= Set pred to nil
12

59/73



Chord — Handling Failure (1/5)

* When n leaves Just disappear (like failure).
* When pred detected failed Set pred to nil.
* When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
V ;= succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ

// When receiving notify(p) at n: procedure n.checkPredecessor() {

if (pred = nil or p O (pred, n]) then If predecessor has failed then
setpred :=p predecessor = nil
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Chord — Handling Failure (2/5)

* When n leaves Just disappear (like failure).
* When pred detected failed Set pred to nil.
* When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
V ;= succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ m
// When receiving notify(p) at n: procedure n.checkPredecessor() {
if (pred = nil or p O (pred, n]) then if predecessor has failed then

setpred :=p predecessor = nil
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Chord — Handling Failure (3/5)

* When n leaves Just disappear (like failure).
* When pred detected failed Set pred to nil.
* When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
V ;= succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ

// When receiving notify(p) at n: procedure n.checkPredecessor() {
if (pred = nil or p O (pred, n]) then If predecessor has failed then
setpred :=p predecessor = nil
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Chord — Handling Failure (4/5)

* When n leaves Just disappear (like failure).
* When pred detected failed Set pred to nil.
* When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
V ;= succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ

// When receiving notify(p) at n: procedure n.checkPredecessor() {
if (pred = nil or p O (pred, n]) then If predecessor has failed then
setpred :=p predecessor = nil
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Chord — Handling Failure (5/5)

* When n leaves Just disappear (like failure).
* When pred detected failed Set pred to nil.
* When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
V ;= succ.pred
if (v #nil and v O (n,succ]) then

set succ i=v
send a notify(n) to succ m
// When receiving notify(p) at n: procedure n.checkPredecessor() {
if (pred = nil or p O (pred, n]) then if predecessor has failed then

setpred :=p predecessor = nil
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Variations of Chord
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Variations of Chord

e Chord#

* DKS




Chord#

* The routing table has exponentially increasing pointers on the ring
(node space) and NOT the identifier space.

successor =0

nter; = . . ;
pownters { pointer;_1 . pointer;_1 : 1 7%= 0
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Chord

Chord#
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DKS

* Generalization of Chord to provide arbitrary arity

e Provide log,(n) hops per lookup
= k being a configurable parameter
" N being the number of nodes

e Instead of only log,(n)
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DKS - Lookup

e Achieving log,(n) lookup

e Each node contains log,(N)
levels, N=Kk!

e Each level contains k
intervals,

* Example, k=4, N=16 (4?),
node O

L

Interval 2

Interval 3

- % Interval 0

Interval 1
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DKS - Lookup

e Achieving log,(n) lookup

e Each node contains log,(N)
levels, N=Kk!

e Each level contains k
intervals,

* Example, k=4, N=16 (4?),
node O

L

Level 1 0..3

Level 2 0 1 2 3
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Summary




Summary

e Pointer of the nodes:
= Successor: first clockwise node
= Predecessor: first anti-clockwise node
= Finger list: successor(n + 2°(i-1)) S
fori=1... M (N =2"M). 14 N

o,
o,
o,
o,
o,
o,
.0
o

e Handling dynamism 13 ", 3
= Periodic stabilization ..
12 ’ ;

* Handling failure
= Successor list
= Periodic stabilization
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