
1/71

Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications

[Slides by Amir H. Payberah (amir@sics.se), Jim Dowling]

mailto:amir@sics.se

2/73

Consistent Hashing

• Imagine we want to store information about books on 4 nodes (servers).
 Use the ISBN to identify each book.

•We could use one of the nodes as a central directory server
•But, with the hash of the ISBN, we don't need a central server:

switch (SHA-1(ISBN) mod 4) {
case 0: // store on node1
case 1: // store on node2
case 2: // store on node3
case 3: // store on node4

}

•Our store gets bigger......we need to add more 2 nodes.
 We now have to re­calculate where all the books are stored.

•Do the books stay on the same nodes?
•The only books stored on the same node as before are those where

SHA-1(ISBN) mod 4 == SHA-1(ISBN) mod 6

3/73

Consistent Hashing

•Consistent hashing allows you to add more nodes and only a small
minority of books will have to move to new nodes.

•Key property: low cost hash­table expansion. That is, a book's
hash key is independent of the number of books and independent
of the number of nodes.

 If you add or remove nodes or books, a book's hash key remains the same.

•Mechanism: hash something constant at each node
 E.g., a node's MAC address

See: Karger et. Al, "Consistent Hashing and Random Trees...”

4/73

Consistent Hashing

•Each node is responsible for all books with hash keys between its
own hash key and the hash key of the next node (going upwards).

• Imagine we have books with SHA­1(ISBN) in a range 0..16
•For node1..node4, the nodes' hash keys are:

 {node1→0, node2→6, node3→11, node4→16}

•So, a book with SHA­1(ISBN) 1 would be stored at node1.→
 (node1) 0 < 1 (book) < 6 (node2)

•Now if we add new nodes positions 4 and 8, respectively:
 Nodes have hash keys: {0, 4, 6, 8, 11, 16}

•Fewer books need to be moved
 Books with hash keys (6..7) get moved from node2 to the first new node
 Books with hash keys (8..10) get moved from node3 to the second new node

5/71

Recap

6/73

Distributed Hash Tables (DHT)

•An ordinary hash­table, which is ...

Key Value

Fatemeh Stockholm

Sarunas Lausanne

Tallat Islamabad

Cosmin Bucharest

Seif Stockholm

Amir Tehran

7/73

Distributed Hash Tables (DHT)

•An ordinary hash­table, which is distributed.

Key Value

Fatemeh Stockholm

Sarunas Lausanne

Tallat Islamabad

Cosmin Bucharest

Seif Stockholm

Amir Tehran

8/73

Distributed Hash Tables (DHT)
Decide on a common key space
for nodes and values

12

25
7

2

14
31

Set of nodes Key of nodes

Set of items Key of items

Connect nodes using a
small, bounded number
of links s.t. max hop
count is minimized

1 2 3 Define a strategy for
assigning items to
nodes

9/71

Chord an Example of DHT

10/73

How to Construct a DHT (Chord)?

• Use a logical name space, called the identifier space, consisting of identifiers
{0,1,2,…, N-1}

• Identifier space is a logical ring modulo N.
0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

1

11/73

How to Construct a DHT (Chord)?

• Use a logical name space, called the identifier space, consisting of identifiers
{0,1,2,…, N-1}

• Identifier space is a logical ring modulo N.

• Every node picks a random identifier
 though Hash H.

• Example:
 Space N=16 {0,…,15}
 Five nodes a, b, c, d, e
 H(a) = 6
 H(b) = 5
 H(c) = 0
 H(d) = 11
 H(e) = 2

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

1

12/73

Successor ...

• The successor of an identifier
is the first node met going in
clockwise direction starting at
the identifier.

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

2

13/73

Successor ...

• The successor of an identifier
is the first node met going in
clockwise direction starting at
the identifier.

• succ(x): is the first node on the
ring with id greater than or
equal x.

 Succ(12) = 0
 Succ(1) = 2
 Succ(6) = 6

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

2

14/73

Connect the Nodes

• Each node points to its
successor.

 The successor of a node n is
succ(n+1).

 0’s successor is succ(1) = 2
 2’s successor is succ(3) = 5
 5’s successor is succ(6) = 6
 6’s successor is succ(7) = 11
 11’s successor is succ(12) = 0

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

2

15/73

Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

3

16/73

Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

Fatemeh

Sarunas

Cosmin

Tallat

Seif

3

17/73

Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

• Store each item at its successor.

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

Fatemeh

Sarunas

Cosmin

Tallat

Seif

3

18/73

Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

• Store each item at its successor.

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

Sarunas

Cosmin

Tallat

Seif

Fatemeh

3

19/71

Lookup?

20/73

Lookup?

• To lookup a key k
 Calculate H(k)
 Follow succ pointers until item k is found

get(seif)0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

Sarunas

Cosmin

Tallat

Seif

Fatemeh

21/73

Lookup?

• To lookup a key k
 Calculate H(k)
 Follow succ pointers until item k is found

• Example
 Lookup ''Seif'' at node 2
 H(''Seif'')=9
 Traverse nodes:

• 2, 5, 6, 11 (BINGO)
 Return ''Stockholm'' to initiator

Key Value

Seif Stockholm

get(seif)0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

Sarunas

Cosmin

Tallat

Seif

Fatemeh

22/73

Lookup?

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else // forward the query around the circle
 return successor.findSuccessor(id)
 }

• (a, b] the segment of the ring moving clockwise from but not including a until and including b.
• n.foo(.) denotes an RPC of foo(.) to node n.
• n.bar denotes and RPC to fetch the value of the variable bar in node n.

23/73

Put and Get

procedure n.put(id, value) {
 s = findSuccessor(id)
 s.store(id, value)
}

•PUT and GET are nothing but lookups!!

procedure n.get(id) {
 s = findSuccessor(id)
 return s.retrieve(id)
}

24/71

How can we improve this?

25/73

Cost of Lookup Operations

• If only the pointer to succ(n+1) is used
 Worst case lookup time is O(N), for N nodes

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

Sarunas

Cosmin

Tallat

Seif

Fatemeh

26/73

Speeding up Lookups

• Finger/routing table:
 Point to succ(n+1)
 Point to succ(n+2)
 Point to succ(n+4)
 Point to succ(n+8)
 …
 Point to succ(n+2M­1)

• Distance always halved to the
destination.

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

27/73

Speeding up Lookups

• Size of routing tables is logarithmic.:
 Routing table size: M, where N = 2^M.

• Every node n knows
successor(n + 2^(i­1))
for i = 1... M

• Routing entries = log
2
(N)

 log
2
(N) hops from any node to

any other node

• Example: Log
2
(1000000) 20≈

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

28/73

DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else // forward the query around the circle
 return successor.findSuccessor(id)
 }

29/73

DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else // forward the query around the circle
 return successor.findSuccessor(id)
 }

closestPrecedingNode(id)

30/73

DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

// search locally for the highest predecessor of id
 procedure closestPrecedingNode(id) {
 for i = m downto 1 do {
 if (finger[i] ∈(n, id)) then
 return finger[i]
 }
 return n
 }

31/73

Chord – Lookup (1/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

15 get(15)

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

32/73

Chord – Lookup (1/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

get(15)

15

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

33/73

Chord – Lookup (2/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

get(15)

15

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

34/73

Chord – Lookup (2/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

get(15)

15

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

35/73

Chord – Lookup (3/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

get(15)

15

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

36/73

Chord – Lookup (3/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

15

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

get(15)

37/73

Chord – Lookup (4/4)

0

9

3

6

2

5

12

8

11

13

4

1

7

10

14

get(15)

15

15

procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈(n, successor]) then
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
 }

38/73

Discussion

•We are basically done.

•But …

•What about joins and failures/leaves?
 Nodes come and go as they wish.

•What about data?
 Should I lose my doc because some kid decided to shut down his machine

and he happened to store my file?

•So actually we just started ...

39/71

Handling Dynamism?
Ring Maintenance?

40/73

Handling Dynamism ­ Ring Maintenance

•Everything depends on successor pointers.

• In Chord, in addition to the successor pointer, every node has a
predecessor pointer as well for ring maintenance.

 Predecessor of node n is the first node met in anti­clockwise direction
starting at n­1.

41/73

Handling Dynamism ­ Ring Maintenance

• Periodic stabilization is used to make pointers eventually correct.
 Try pointing succ to closest alive successor.
 Try pointing pred to closest alive predecessor.

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

42/73

Handling Dynamism ­ Ring Maintenance

• Periodic stabilization is used to make pointers eventually correct.
 Try pointing succ to closest alive successor.
 Try pointing pred to closest alive predecessor.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

43/73

Handling Dynamism ­ Ring Maintenance

• Periodic stabilization is used to make pointers eventually correct.
 Try pointing succ to closest alive successor.
 Try pointing pred to closest alive predecessor.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

44/71

Handling Join?

45/73

Chord – Handling Join (1/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

46/73

Chord – Handling Join (2/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

13

47/73

Chord – Handling Join (3/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

13

48/73

Chord – Handling Join (4/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

13

49/73

Chord – Handling Join (5/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

13

50/71

Fixing Fingers

51/73

Chord – Fixing Fingers

•Periodically refresh finger table entries, and store the index of the
next finger to fix.

•Local variable next initially is 0.

// When receiving notify(p) at n:
procedure n.fixFingers() {
 next := next+1
 if (next > m) then
 next := 1
 finger[next] := findSuccessor(n ⊕ 2^(next ­ 1))

 }

52/73

Chord – Fixing Fingers (1/4)

•Current situation: succ(N48) is N60.
•Succ(21⊕ 2^(6­1)) = Succ(53) = N60.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

53/73

Chord – Fixing Fingers (2/4)

• Succ(21⊕ 2^(6­1)) = Succ(53) = ?
• New node N56 joins and stabilizes successor pointer.
• Finger 6 of node N21 is wrong now.
• N21 eventually try to fix finger 6 by looking up 53 which stops at N48, however

and nothing changes.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

N56

54/73

Chord – Fixing Fingers (3/4)

• Succ(21⊕ 2^(6­1)) = Succ(53) = ?
• N48 will eventually stabilize its successor.
• This means the ring is correct now.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

N56

55/73

Chord – Fixing Fingers (4/4)

• Succ(21⊕ 2^(6­1)) = Succ(53) = N56
• When N21 tries to fix Finger 6 again, this time the response from N48 will be

correct and N21 corrects the finger.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

N56

56/71

Handling Failure?

57/73

Successor List

•A node has a successors list of size r containing the immediate r
successors

 succ(n+1)
 succ(succ(n+1)+1)
 succ(succ(succ(n+1)+1)+1)

•How big should r be?
 log(N)

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

58/73

Successor List ...

// Periodically at n
procedure n.stabilize() {
 succ := find first alive node in successor list

 v := succ.pred
 if (v ≠ nil and v ∈ (n,succ]) then

 set succ := v
 send a notify(n) to succ

 updateSuccessorList(succ.successorList)
 }

// join a Chord ring containing node m
 procedure n.join(m) {
 pred := nil
 Succ := m.findSuccessor(n)
 updateSuccesorList(succ.successorList)
 }

59/73

Dealing with Failures

•Periodic stabilization

• If successor fails
 Replace with closest alive successor

• If predecessor fails

 Set pred to nil

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

60/73

Chord – Handling Failure (1/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

13

procedure n.checkPredecessor() {
 if predecessor has failed then
 predecessor := nil
}

61/73

Chord – Handling Failure (2/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

procedure n.checkPredecessor() {
 if predecessor has failed then
 predecessor := nil
}

62/73

Chord – Handling Failure (3/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

procedure n.checkPredecessor() {
 if predecessor has failed then
 predecessor := nil
}

63/73

Chord – Handling Failure (4/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

procedure n.checkPredecessor() {
 if predecessor has failed then
 predecessor := nil
}

64/73

Chord – Handling Failure (5/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
 set succ := v

 send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
 set pred := p

15

11

procedure n.checkPredecessor() {
 if predecessor has failed then
 predecessor := nil
}

65/71

Variations of Chord

66/73

Variations of Chord

•Chord#

•DKS

67/73

Chord#

•The routing table has exponentially increasing pointers on the ring
(node space) and NOT the identifier space.

68/73

Chord vs. Chord#

0

9

3

2

5
11

15
1

7

10

14

13

Chord Chord#

8

4

6

12

0

9

3

2

5
11

15
1

7

10

14

13

8

4

6

12

69/73

DKS

•Generalization of Chord to provide arbitrary arity

•Provide logk(n) hops per lookup
 k being a configurable parameter
 n being the number of nodes

• Instead of only log2(n)

70/73

DKS – Lookup

•Achieving logk(n) lookup
•Each node contains logk(N)=L

levels, N=kL

•Each level contains k
intervals,

•Example, k=4, N=16 (42),
node 0

Node 0 I0 I1 I2 I3

Level 1 0 ... 3 4 ... 7 8 ... 11 12 ... 15

0

11

2

6

5

1

3

4

13

14

15

12

7

10

8
9

Interval 0

Interval 1

Interval 3

Interval 2

71/73

DKS – Lookup

•Achieving logk(n) lookup
•Each node contains logk(N)=L

levels, N=kL

•Each level contains k
intervals,

•Example, k=4, N=16 (42),
node 0

0

11

2

6

5

1

3

4

13

14

15

12

7

10

8
9

Node 0 I0 I1 I2 I3

Level 1 0 ... 3 4 ... 7 8 ... 11 12 ... 15

Level 2 0 1 2 3

72/71

Summary

73/73

Summary

•Pointer of the nodes:
 Successor: first clockwise node
 Predecessor: first anti­clockwise node
 Finger list: successor(n + 2^(i­1))

for i = 1... M (N = 2^M).

•Handling dynamism
 Periodic stabilization

•Handling failure
 Successor list
 Periodic stabilization

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

