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Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications

[Slides by Amir H. Payberah (amir@sics.se), Jim Dowling]
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Consistent Hashing

• Imagine we want to store information about books on 4 nodes (servers).
 Use the ISBN to identify each book. 

•We could use one of the nodes as a central directory server
•But, with the hash of the ISBN, we don't need a central server:

switch (SHA-1(ISBN) mod 4) {
case 0: // store on node1
case 1: // store on node2
case 2: // store on node3
case 3: // store on node4

}

•Our store gets bigger......we need to add more 2 nodes.
 We now have to re­calculate where all the books are stored.

•Do the books stay on the same nodes?
•The only books stored on the same node as before are those where 

SHA-1(ISBN) mod 4 == SHA-1(ISBN) mod 6
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Consistent Hashing

•Consistent hashing allows you to add more nodes and only a small 
minority of books will have to move to new nodes.

•Key property: low cost hash­table expansion. That is, a book's 
hash key is independent of the number of books and independent 
of the number of nodes.

 If you add or remove nodes or books, a book's hash key remains the same.

•Mechanism: hash something constant at each node
 E.g., a node's MAC address

See: Karger et. Al,  "Consistent Hashing and Random Trees...”
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Consistent Hashing

•Each node is responsible for all books with hash keys between its 
own hash key and the hash key of the next node (going upwards).

• Imagine we have books with SHA­1(ISBN) in a range 0..16
•For node1..node4, the nodes' hash keys are:

 {node1→0, node2→6, node3→11, node4→16}

•So, a book with SHA­1(ISBN) 1 would be stored at node1.→
 (node1) 0 < 1 (book) < 6 (node2)

•Now if we add new nodes positions 4 and 8, respectively:
 Nodes have hash keys: {0, 4, 6, 8, 11, 16}

•Fewer books need to be moved
 Books with hash keys (6..7) get moved from node2 to the first new node
 Books with hash keys (8..10) get moved from node3 to the second new node
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Recap
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Distributed Hash Tables (DHT)

•An ordinary hash­table, which is ...

Key Value

Fatemeh Stockholm

Sarunas Lausanne

Tallat Islamabad

Cosmin Bucharest

Seif Stockholm

Amir Tehran
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Distributed Hash Tables (DHT)

•An ordinary hash­table, which is distributed.

Key Value

Fatemeh Stockholm

Sarunas Lausanne

Tallat Islamabad

Cosmin Bucharest

Seif Stockholm

Amir Tehran
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Distributed Hash Tables (DHT)
Decide on a common key space
for nodes and values
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Chord an Example of DHT
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How to Construct a DHT (Chord)?

• Use a logical name space, called the identifier space, consisting of identifiers 
{0,1,2,…, N-1}

• Identifier space is a logical ring modulo N.
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How to Construct a DHT (Chord)?

• Use a logical name space, called the identifier space, consisting of identifiers 
{0,1,2,…, N-1}

• Identifier space is a logical ring modulo N.

• Every node picks a random identifier
 though Hash H.

• Example:
 Space N=16 {0,…,15}
 Five nodes a, b, c, d, e
 H(a) = 6
 H(b) = 5
 H(c) = 0
 H(d) = 11
 H(e) = 2
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Successor ...

• The successor of an identifier 
is the first node met going in 
clockwise direction starting at 
the identifier.
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Successor ...

• The successor of an identifier 
is the first node met going in 
clockwise direction starting at 
the identifier.

• succ(x): is the first node on the 
ring with id greater than or 
equal x.

 Succ(12) = 0
 Succ(1) = 2
 Succ(6) = 6
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Connect the Nodes

• Each node points to its 
successor.

 The successor of a node n is 
succ(n+1).

 0’s successor is succ(1) = 2
 2’s successor is succ(3) = 5
 5’s successor is succ(6) = 6
 6’s successor is succ(7) = 11
 11’s successor is succ(12) = 0
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Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier 
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

3
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Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier 
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4
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Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier 
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

• Store each item at its successor.
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Where to Store Data?

• Use globally known hash function, H.

• Each item <key,value> gets identifier 
H(key) = k.

 H(''Fatemeh'') = 12
 H(''Cosmin'') = 2
 H(''Seif'') = 9
 H(''Sarunas'') = 14
 H(''Tallat'') = 4

• Store each item at its successor.
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Lookup?
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Lookup?

• To lookup a key k
 Calculate H(k)
 Follow succ pointers until item k is found

get(seif)0
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Lookup?

• To lookup a key k
 Calculate H(k)
 Follow succ pointers until item k is found

• Example
 Lookup ''Seif'' at node 2
 H(''Seif'')=9
 Traverse nodes:

• 2, 5, 6, 11 (BINGO)
 Return ''Stockholm'' to initiator

Key Value

Seif Stockholm

get(seif)0
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Lookup?

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else // forward the query around the circle
           return successor.findSuccessor(id)
   }

• (a, b] the segment of the ring moving clockwise from but not including a until and including b.
• n.foo(.) denotes an RPC of foo(.) to node n.
• n.bar denotes and RPC to fetch the value of the variable bar in node n.
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Put and Get

procedure n.put(id, value) {
   s = findSuccessor(id)
   s.store(id, value)
}

•PUT and GET are nothing but lookups!!

procedure n.get(id) {
   s = findSuccessor(id)
   return s.retrieve(id)
}
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How can we improve this?
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Cost of Lookup Operations

• If only the pointer to succ(n+1) is used
 Worst case lookup time is O(N), for N nodes
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Speeding up Lookups

• Finger/routing table:
 Point to succ(n+1)
 Point to succ(n+2)
 Point to succ(n+4)
 Point to succ(n+8)
 …
 Point to succ(n+2M­1)

• Distance always halved to the 
destination.
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Speeding up Lookups

• Size of routing tables is logarithmic.:
 Routing table size: M, where N = 2^M.

• Every node n knows 
successor(n + 2^(i­1)) 
for i = 1... M

•  Routing entries = log
2
(N)

 log
2
(N) hops from any node to 

any other node

• Example: Log
2
(1000000) 20≈
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DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else // forward the query around the circle
           return successor.findSuccessor(id)
   }
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DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else // forward the query around the circle
           return successor.findSuccessor(id)
   }

closestPrecedingNode(id)
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DHT Lookup

// ask node n to find the successor of id
procedure n.findSuccessor(id) {

       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }

// search locally for the highest predecessor of id
   procedure closestPrecedingNode(id) {
      for i = m downto 1 do {
         if (finger[i] ∈(n, id)) then 
            return finger[i]
     }
     return n
  }
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Chord – Lookup (1/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }



32/73

Chord – Lookup (1/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }
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Chord – Lookup (2/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }
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Chord – Lookup (2/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }
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Chord – Lookup (3/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }
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Chord – Lookup (3/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }

get(15)
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Chord – Lookup (4/4)
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procedure n.findSuccessor(id) {
       if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
       else if (id ∈(n, successor]) then
           return successor
       else { // forward the query around the circle
           m := closestPrecedingNode(id)
           return m.findSuccessor(id)
       }
   }
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Discussion

•We are basically done.

•But …

•What about joins and failures/leaves?
 Nodes come and go as they wish.

•What about data?
 Should I lose my doc because some kid decided to shut down his machine 

and he happened to store my file?

•So actually we just started ...
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Handling Dynamism?
Ring Maintenance?
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Handling Dynamism ­ Ring Maintenance

•Everything depends on successor pointers.

• In Chord, in addition to the successor pointer, every node has a 
predecessor pointer as well for ring maintenance.

 Predecessor of node n is the first node met in anti­clockwise direction 
starting at n­1.
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Handling Dynamism ­ Ring Maintenance

• Periodic stabilization is used to make pointers eventually correct.
 Try pointing succ to closest alive successor.
 Try pointing pred to closest alive predecessor.
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Handling Dynamism ­ Ring Maintenance

• Periodic stabilization is used to make pointers eventually correct.
 Try pointing succ to closest alive successor.
 Try pointing pred to closest alive predecessor.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ
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Handling Dynamism ­ Ring Maintenance

• Periodic stabilization is used to make pointers eventually correct.
 Try pointing succ to closest alive successor.
 Try pointing pred to closest alive predecessor.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p
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Handling Join?
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Chord – Handling Join (1/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p
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Chord – Handling Join (2/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p
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Chord – Handling Join (3/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p
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Chord – Handling Join (4/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p

15

11

13



49/73

Chord – Handling Join (5/5)

•When n joins:
 Find n’s successor with lookup(n)
 Set succ to n’s successor
 Stabilization fixes the rest

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p
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11

13
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Fixing Fingers
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Chord – Fixing Fingers

•Periodically refresh finger table entries, and store the index of the 
next finger to fix.

•Local variable next initially is 0.

// When receiving notify(p) at n:
procedure n.fixFingers() {
   next := next+1
   if (next > m) then
      next := 1
   finger[next] := findSuccessor(n ⊕ 2^(next ­ 1))

  }
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Chord – Fixing Fingers (1/4)

•Current situation: succ(N48) is N60.
•Succ(21⊕ 2^(6­1)) = Succ(53) = N60.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node
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Chord – Fixing Fingers (2/4)

• Succ(21⊕ 2^(6­1)) = Succ(53) = ?
• New node N56 joins and stabilizes successor pointer.
• Finger 6 of node N21 is wrong now.
• N21 eventually try to fix finger 6 by looking up 53 which stops at N48, however 

and nothing changes.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

N56
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Chord – Fixing Fingers (3/4)

• Succ(21⊕ 2^(6­1)) = Succ(53) = ?
• N48 will eventually stabilize its successor.
• This means the ring is correct now.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

N56
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Chord – Fixing Fingers (4/4)

• Succ(21⊕ 2^(6­1)) = Succ(53) = N56
• When N21 tries to fix Finger 6 again, this time the response from N48 will be 

correct and N21 corrects the finger.

N21 N26 N32 N48 N60

N53

21⊕ 2^(6­1) = 53 N21.finger
6
.node

N56
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Handling Failure?
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Successor List

•A node has a successors list of size r containing the immediate r 
successors

 succ(n+1)
 succ(succ(n+1)+1)
 succ(succ(succ(n+1)+1)+1)

•How big should r be? 
 log(N)
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Successor List ...

// Periodically at n
procedure n.stabilize() {
   succ := find first alive node in successor list

       v := succ.pred
      if (v ≠ nil and v ∈ (n,succ]) then

      set succ := v
      send a notify(n) to succ

   updateSuccessorList(succ.successorList)
   }

// join a Chord ring containing node m
   procedure n.join(m) {
      pred := nil
     Succ := m.findSuccessor(n)
    updateSuccesorList(succ.successorList)
  }
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Dealing with Failures

•Periodic stabilization

• If successor fails
 Replace with closest alive successor

  
• If predecessor fails

 Set pred to nil
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Chord – Handling Failure (1/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p

15

11

13

procedure n.checkPredecessor() {
   if predecessor has failed then
       predecessor := nil
}
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Chord – Handling Failure (2/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p

15

11

procedure n.checkPredecessor() {
   if predecessor has failed then
       predecessor := nil
}
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Chord – Handling Failure (3/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p

15

11

procedure n.checkPredecessor() {
   if predecessor has failed then
       predecessor := nil
}
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Chord – Handling Failure (4/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p

15

11

procedure n.checkPredecessor() {
   if predecessor has failed then
       predecessor := nil
}
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Chord – Handling Failure (5/5)

• When n leaves Just disappear (like failure).
• When pred detected failed Set pred to nil.

• When succ detected failed Set succ to closest alive in successor list.

// Periodically at n:
v := succ.pred
if (v ≠ nil and v ∈ (n,succ]) then
    set succ := v

   send a notify(n) to succ

// When receiving notify(p) at n:
if (pred = nil or p ∈ (pred, n]) then
    set pred := p

15

11

procedure n.checkPredecessor() {
   if predecessor has failed then
       predecessor := nil
}
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Variations of Chord
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Variations of Chord

•Chord#

•DKS
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Chord#

•The routing table has exponentially increasing pointers on the ring 
(node space) and NOT the identifier space.
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Chord vs. Chord#
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DKS

•Generalization of Chord to provide arbitrary arity

•Provide logk(n) hops per lookup
 k  being a configurable parameter
 n  being the number of nodes

• Instead of only log2(n)
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DKS – Lookup

•Achieving logk(n) lookup
•Each node contains logk(N)=L 

levels, N=kL

•Each level contains k 
intervals, 

•Example, k=4, N=16 (42), 
node 0

Node 0 I0 I1 I2 I3

Level 1 0 ... 3 4 ... 7 8 ... 11 12 ... 15
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DKS – Lookup

•Achieving logk(n) lookup
•Each node contains logk(N)=L 

levels, N=kL

•Each level contains k 
intervals, 

•Example, k=4, N=16 (42), 
node 0

0

11

2

6

5

1

3

4

13

14

15

12

7

10

8
9

Node 0 I0 I1 I2 I3

Level 1 0 ... 3 4 ... 7 8 ... 11 12 ... 15

Level 2 0 1 2 3
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Summary
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Summary

•Pointer of the nodes:
 Successor: first clockwise node
 Predecessor: first anti­clockwise node
 Finger list: successor(n + 2^(i­1)) 

for i = 1... M (N = 2^M).

•Handling dynamism
 Periodic stabilization

•Handling failure
 Successor list
 Periodic stabilization
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