ﬁ

Kademlia: A Peer-to-peer Information System
Based on the XOR Metric

Based on slides by Amir H. Payberah (amir@sics.se)

_




(QsitTorrent

L g

e




Kademlia Basics

* Kademlia is a key-value(object) store.

* Each object is stored at the k closest nodes to the object's ID.

* Distance between id1 and id2: d(id1, id2) = id1 XOR id2
" If ID space is 3 bits:

d(1, 4) = d(001,, 100,)
= 001, XOR 100,
=101,
=5

3/31



Kademlia Routing Table

* Kbucket: each node keeps a list of references to nodes
(contacts) of distance between 2' and 2+ for i=1 to i=N.
* Each Kbucket has max k entries.

KBucket List

KBucket -eeeseeeesimsmennes > [1,2)
[2, 4)
[4,8)

[8, 16)
[16, 32)
[32, 64)
[64, 128)
[128, 256)

4/31



Kademlia Tuning Parameters

* B is the size in bits of the keys used to identify nodes and store
and retrieve data; in basic Kademlia this is 160, the length of an
SHAL digest (hash).

* kK is the maximum number of contacts stored in a Kbucket; this

IS normally 20.
* alpha () represents the degree of parallelism in network calls,
usually 3.

° Other constants used in Kad:

" tExpire = 86400s, the time after which a key/value pair expires; this is a time-to-live
(TTL) from the original publication date

" tRefresh = 3600s, after which an otherwise unaccessed bucket must be refreshed

" tReplicate = 3600s, the interval between Kademlia replication events, when a node
IS required to publish its entire database

" tRepublish = 86400s, the time after which the original publisher must republish a
key/value pair

5/31



FIND_NODE in Kademlia

KBucket List
! Node

SRR, closest nodes to Q
are stored here

* Closest nodes in ID space

6/31



FIND_NODE in Kademlia

KBucket List
! Node

SRR, closest nodes to Q
are stored here

... and select o nodes from
the appropriate kbucket

7/31



ﬁ

FIND NODE in Kademlia

FIND_NODE(Q)




FIND_NODE in Kademlia

9/31



ﬁ

FIND NODE in Kademlia

Returns k/closest nodes to Q

nodes to Q -

Returns k closest nodes to Q

Returns k clo




FIND NODE in Kademlia, Update Kbuckets

KBucket List

When P receives a response from a node, it
updates the appropriate Kbucket for the
sender’s node ID.

Received responses from A, B weeeeeseeeees >
and C

P issues up to o new requests to nodes it has not yet queried from the set of nodes
received in the responses

11/31



ﬁ

FIND NODE in Kademlia

FIND_NODE(Q)




FIND_NODE in Kademlia

Received information in round n-1

Received information in round n

Repeats this procedure iteratively until received information in
round n-1 and n are the same.

13/31



FIND NODE in Kademlia

P resends the FIND_NODE to k closest nodes it has not already queried ...

Received information in round n ==sseeeeeeeeeeenenes >




Let's Look Inside
Kademlia



Node State

* Kbucket: each node keeps a list of information for nodes of
distance between 2' and 2.

"0<=i<160

= Sorted by time last seen.

[1,2)
[2, 4)
[4, 8)

16/31



Node State

* Kbucket: each node keeps a list of information for nodes of
distance between 2' and 2.

"0<=i<160
= Sorted by time last seen.

[1, 2) - Two first bits in common
[2, 4) - First bit in common

110

[4, 8) - No common prefix

17/31



Kademlia RPCs

* PING

" Probes a node to see if it is online.

* STORE

" Instructs a node to store a <key, value> pair.

* FIND NODE

" Returns information for the k nodes it knows about closest to the target ID.
" It can be from one kbucket or more.

°* FIND_VALUE
= Like FIND NODE, ...
" But if the recipient has stored they <key, value>, it just returns the stored value.

18/31



ﬁ

Store Data

* The <key, value> data is stored in k closest nodes to the key.




Lookup Service

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)

20/31



Maintaining Kbucket List (Routing Table)

* When a Kademlia node receives any message from another node, it
updates the appropriate kbucket for the sender’s node ID.

21/31



Maintaining Kbucket List (Routing Table)

* When a Kademlia node receives any message from another node, it
updates the appropriate kbucket for the sender’s node ID.

* |[f the sending node already exists in the kbucket:
" Moves it to the tail of the list.

22/31



Maintaining Kbucket List (Routing Table)

* When a Kademlia node receives any message from another node, it
updates the appropriate kbucket for the sender’s node ID.

* |[f the sending node already exists in the kbucket:
" Moves it to the tail of the list.

* Otherwise:

" |If the bucket has fewer than k entries:
* Inserts the new sender at the tail of the list.
" Otherwise:
* Pings the kbucket’s least-recently seen node:
* If the least-recently seen node fails to respond:
- it is evicted from the k-bucket and the new sender inserted at the tail.
* Otherwise:
- it is moved to the tail of the list, and the new sender’s contact is
discarded.

23/31



Maintaining Kbucket List (Routing Table)

* Buckets should generally be kept constantly fresh, due to traffic of
requests travelling through nodes.

* When there is no traffic: each peer picks a random ID in kbucket's range
and performs a node search for that ID.

24/31



Join
* Node P contacts an already participating node Q.

* Pinserts Q into the appropriate kbucket.

* P then performs a node lookup for its own node ID.

25/31



ﬁ

Leave And Failure

* No action!

* |f a node does not respond to the PING message, remove it from the
table.




Kademlia vs. Chord



ﬁ

Kademlia vs. Chord

* |ike Chord

" When a = 1 the lookup algorithm resembles Chord's in term of message
cost.

* Unlike Chord

" XOR metric is symmetric, while Chord's metric is asymmetric.




Summary

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)

29/31



References

* Kademlia Specification
" http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html

* Petar Maymounkov and David Mazieres, "Kademlia: A
Peer-to-Peer Information System Based on the XOR Metric",

IPTPS '02
" http://lwww.cs.rice.edu/Conferences/IPTPS02/109.pdf

* Daniel Stutzbach and Reza Rejaie, "Improving Lookup

Performance over a Widely-Deployed DHT", INFOCOM '06
" http://www.barsoom.org/~agthorr/papers/infocom-2006-kad.pdf

* Raul Jimenez, Flutra Osmani and Bjorn Knutsson, “Sub-Second

Lookups on a Large-Scale Kademlia-Based Overlay”, P2P '11.
" http://people.kth.se/~rauljc/p2pll/jimenez2011subsecond.pdf

30/31


http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html
http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf
http://www.barsoom.org/~agthorr/papers/infocom-2006-kad.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

