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Kademlia: A Peer-to-peer Information System
Based on the XOR Metric

Based on slides by Amir H. Payberah (amir@sics.se)
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Kademlia Basics

* Kademlia is a key-value(object) store.

* Each object is stored at the k closest nodes to the object's ID.

* Distance between id1 and id2: d(id1, id2) = id1 XOR id2
" If ID space is 3 bits:

d(1, 4) = d(001,, 100,)
= 001, XOR 100,
=101,
=5
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Kademlia Routing Table

* Kbucket: each node keeps a list of references to nodes
(contacts) of distance between 2' and 2+ for i=1 to i=N.
* Each Kbucket has max k entries.

KBucket List

KBucket -eeeseeeesimsmennes > [1,2)
[2, 4)
[4,8)

[8, 16)
[16, 32)
[32, 64)
[64, 128)
[128, 256)
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Kademlia Tuning Parameters

* B is the size in bits of the keys used to identify nodes and store
and retrieve data; in basic Kademlia this is 160, the length of an
SHAL digest (hash).

* kK is the maximum number of contacts stored in a Kbucket; this

IS normally 20.
* alpha () represents the degree of parallelism in network calls,
usually 3.

° Other constants used in Kad:

" tExpire = 86400s, the time after which a key/value pair expires; this is a time-to-live
(TTL) from the original publication date

" tRefresh = 3600s, after which an otherwise unaccessed bucket must be refreshed

" tReplicate = 3600s, the interval between Kademlia replication events, when a node
IS required to publish its entire database

" tRepublish = 86400s, the time after which the original publisher must republish a
key/value pair
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FIND_NODE in Kademlia

KBucket List
! Node

SRR, closest nodes to Q
are stored here

* Closest nodes in ID space
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FIND_NODE in Kademlia

KBucket List
! Node

SRR, closest nodes to Q
are stored here

... and select o nodes from
the appropriate kbucket
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FIND NODE in Kademlia

FIND_NODE(Q)




FIND_NODE in Kademlia
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FIND NODE in Kademlia

Returns k/closest nodes to Q

nodes to Q -

Returns k closest nodes to Q

Returns k clo




FIND NODE in Kademlia, Update Kbuckets

KBucket List

When P receives a response from a node, it
updates the appropriate Kbucket for the
sender’s node ID.

Received responses from A, B weeeeeseeeees >
and C

P issues up to o new requests to nodes it has not yet queried from the set of nodes
received in the responses
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FIND NODE in Kademlia

FIND_NODE(Q)




FIND_NODE in Kademlia

Received information in round n-1

Received information in round n

Repeats this procedure iteratively until received information in
round n-1 and n are the same.
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FIND NODE in Kademlia

P resends the FIND_NODE to k closest nodes it has not already queried ...

Received information in round n ==sseeeeeeeeeeenenes >




Let's Look Inside
Kademlia



Node State

* Kbucket: each node keeps a list of information for nodes of
distance between 2' and 2.

"0<=i<160

= Sorted by time last seen.

[1,2)
[2, 4)
[4, 8)
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Node State

* Kbucket: each node keeps a list of information for nodes of
distance between 2' and 2.

"0<=i<160
= Sorted by time last seen.

[1, 2) - Two first bits in common
[2, 4) - First bit in common

110

[4, 8) - No common prefix
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Kademlia RPCs

* PING

" Probes a node to see if it is online.

* STORE

" Instructs a node to store a <key, value> pair.

* FIND NODE

" Returns information for the k nodes it knows about closest to the target ID.
" It can be from one kbucket or more.

°* FIND_VALUE
= Like FIND NODE, ...
" But if the recipient has stored they <key, value>, it just returns the stored value.
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Store Data

* The <key, value> data is stored in k closest nodes to the key.




Lookup Service

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)
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Maintaining Kbucket List (Routing Table)

* When a Kademlia node receives any message from another node, it
updates the appropriate kbucket for the sender’s node ID.
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Maintaining Kbucket List (Routing Table)

* When a Kademlia node receives any message from another node, it
updates the appropriate kbucket for the sender’s node ID.

* |[f the sending node already exists in the kbucket:
" Moves it to the tail of the list.
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Maintaining Kbucket List (Routing Table)

* When a Kademlia node receives any message from another node, it
updates the appropriate kbucket for the sender’s node ID.

* |[f the sending node already exists in the kbucket:
" Moves it to the tail of the list.

* Otherwise:

" |If the bucket has fewer than k entries:
* Inserts the new sender at the tail of the list.
" Otherwise:
* Pings the kbucket’s least-recently seen node:
* If the least-recently seen node fails to respond:
- it is evicted from the k-bucket and the new sender inserted at the tail.
* Otherwise:
- it is moved to the tail of the list, and the new sender’s contact is
discarded.
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Maintaining Kbucket List (Routing Table)

* Buckets should generally be kept constantly fresh, due to traffic of
requests travelling through nodes.

* When there is no traffic: each peer picks a random ID in kbucket's range
and performs a node search for that ID.
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Join
* Node P contacts an already participating node Q.

* Pinserts Q into the appropriate kbucket.

* P then performs a node lookup for its own node ID.
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Leave And Failure

* No action!

* |f a node does not respond to the PING message, remove it from the
table.




Kademlia vs. Chord
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Kademlia vs. Chord

* |ike Chord

" When a = 1 the lookup algorithm resembles Chord's in term of message
cost.

* Unlike Chord

" XOR metric is symmetric, while Chord's metric is asymmetric.




Summary

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)

[1,2)
[2, 4)
[4, 8)
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