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Linear quadratic control

Allows to compute the controller F, (s) that minimizes

: 1 1 T T
N | .
J = lim /O 27 Q12 + u” Qou] dt

for given (positive definite) weight matrices Q, and Q..
Easy to influence control energy/transient performance trade-off
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Linear quadratic control

Disadvantage of linear-quadratic control:
— Robustness and frequency-domain properties only indirectly

Challenge: framework developed for stochastic disturbances

: 1 T
J=E {ngmoof/o [zTle -+ uTQQu] dt}

— Need to review stochastic disturbance models

— Have to skip some details
(continuous-time stochastic processes technically tricky)

Relation to H_ control will be explored in next lecture.
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Learning aims

After this lecture, you should be able to

e model disturbances in terms of their spectra

e use spectral factorization to re-write disturbances as filtered white noise
e compute the LQG-optimal controller (observer/controller gains)

e describe how the LQG weights qualitatively affect the time responses

Material: course book 5.1-5.4 + 9.1-9.3 + 9.A
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State space description of multivariable linear system
d
aw(t) = Ax(t) + Bu(t)
y(t) = Cz(t) + Du(?)

where z(t) € R", u(t) €e R™,y(t) € R?P
ox(t) is called the state vector,

esystems on state-space form often written as (A,B,C,D)

Transfer matrix computed as

G(s)=C(sI — A 1B+ D
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Controllability

The state x is controllable if, given x(0)=0, there exists u(t)
such that x(t)=  for some t<co.

The system is controllable if all £ are controllable.

The controllability matrix

S(A, B) - [B AB A2B ... An—lB} c RXmn

e Controllable states ¥ can be written as £ = S(A, B)a for some ac RN

e System is controllable if S(A,B) has full rank
(i.e., for each x there exists a such that x=S(A,B)a)
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Observability

The state & #= 0 is unobservable if x(0) = Z and u(t)=0 for t>0
implies that y(t)=0 for t> 0.
The system is observable if no states are unobservable

The observability matrix

C
CA

O(A,C) = e RPMXN

CAn—1

e Unobservable states z are solutions toO(A,C)Z =0

e System is observable if O(A,C) has full rank
(i.e., only =0 solves O(A,C)z = 0)
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Modifying dynamics via state feedback

Open loop system
d
am(t) = Axz(t) + Bu(t)

can be controlled using state feedback u(t)=-Lx(t) =

d
~a(t) = (A= BL)a(t)

Q: can we choose L so that A-BL gets arbitrary eigenvalues?
A: if and only if the system is controllable.

EL2520 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



Observers

The state vector of the system
d
E:c(t) = Axz(t) + Bu(t)
y(t) = Cxz(t)

can be estimated using an observer

%w) = AE(t) + Bu(t) + K(y(t) — Cz) =
%5;@ — (A— KCO)Z(t) where 3(t) = z(t) — (1)

Q: can we choose K so A-KC gets arbitrary eigenvalues?
A: if and only if system is observable
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Stabilizability and detectability

Control objective concerns only outputs z of system, i.e., controllability
and observability of all states may not be so important.

Exception: must be able to control and observe unstable modes!

A system (A,B) is stabilizable if there is L so that A-BL is stable

A system (A,C) is detectable if there is K so that A-KC is stable
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Today s lecture

e Review: Modeling disturbances as filtered white noise
e Linear quadratic Gaussian (LQG) control
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Disturbances

Disturbances model a wide range of phenomena that are not
easily described in more detail, e.qg.

— load variations, measurement noise, process variations, ...

0 10 20 30 40 50 60
Important to model
- Size, frequency content and correlations between disturbances.
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Signal sizes

So far in the course, we have used the 2-norm

©.0)
213 = [ I1=()I? at

If the integral does not converge, we can use

1 /1
2 . 2
z = |lim — z(t dt

A crude measure “size” (disregards frequency content of signal)
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More informative measure

How are z(t) related to z(t-t)? One measure is

1T
ro(r) = lim ?/O () 2(t — 7) dt

T—o0
For ergodic stochastic processes, we have
ro(7) = Ez(t)2z(t — 1)

(i.e., the covariance function of the signal)
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Vector valued signals

For vector-valued z, coupling between z; and z; can be described by

rii(r) = lim %/C)Tzi(t)zj(t—T) dt

T—o0

Can be combined into matrix

T T
R.(7) = lim E/o ()T (¢ = 1) dt

T'— 00

For ergodic stochastic processes, we get

R.(t) =Ez2(t)z' (¢t — 1)
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Signal spectra

Translating the signal measure to the frequency domain

B, (w) = / T R.(r)e T dr

— 00

¢, (w) is called the spectrum of z.

Interpretation
o [®,(w)];; measures the energy content of z; at frequency w

o [P (w)]i; measures coupling of z; and z; at frequency
© [®,(w)]i; =0 implies that z; and z; are uncorrelated

A signal with &, constant for all w is called white noise,
(in this case, we call ®, the covariance matrix of z)
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Examples: signals and spectra
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Disturbances as filtered white noise

Fact (spectral factorization): any spectrum ®(w) which is
rational in w? , can be represented as white noise filtered through a
stable non-minimum phase linear system.

___'___
)]
a
y
0

(see course book Theorem 5.1 for a precise statement)
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State-space model with distubances

a(t) = An(t) + Bu(t) + Nu (1)
y(t) = Ca(t) + Du(t) + wa(t)

If disturbances w; and w, are not white, but have spectra
that can be obtained via w;, = G,v, where v, is white noise, then
we can re-write system as

2 (1) = AR(t) + Bu(t) + Noy (1)
y(t) = Ca(t) + Du(t) + vo(t)

Note: T is x augmented with the states from G,, G,;
A, B,...are A, B,... augmented with state-space descriptions of G,
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Today’ s lecture

e Linear quadratic Gaussian (LQG) control
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Linear quadratic Gaussian control

Model: linear system with white noise
n(t) = Aa(t) + Bu(t) + Noa (1
y(t) = Cz(t) + va(t)

z(t) = Mx(t)
where v, v, are white noise with
R1 Ri2
cov([vy, vo]) =
([v1, v2]) RI, R2]

Objective: minimize effect of v on z, punish control cost
1 /T
J=E {Tll—r>n00 ?/O [ZTle -+ UTQQ’U,] dt}

LQG: Linear system, Quadratic cost, Gaussian noise
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Solution structure

Optimal solution satisfies separation principle, composed of

e Optimal linear state feedback (Linear-quadratic regulator)
e Optimal observer (Kalman filter)

Y
A - G -
Kalman
— filter  ——
u

L
/\
X
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Optimal solution

State feedback

u(t) = —Lz(t) = —Q5 BT S#(¢)
where S is the solution to the algebraic Riccati equation

ATS + 544+ MTQM — SBQ;1BTS =0
Kalman filter

z(t) = Ax(t) + Bu(t) + K(y(¢) — Cz(1))
where K=(PC'+NR;5)R,! and P is the solution to

AP+ PAT + NRiNT — (PCT + NR15)R; 1 (PCT 4+ NR15)T =0
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Example: LQR for scalar system

Scalar linear system

z(t) = ax(t) + u(l), y(t) = z(t)

with cost
J = /O (< + pu=] dt

Riccati equation
Das+1—52/p=0
has solutions

2
8=api\/(pa) +p
so the optimal feedback law is

u=—(s/p)z = —(a+/a® +1/p)x
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Example: LQR for scalar system

Closed loop system

i(t) = —(ya® + 1/p)a(t)

Note: if system is unstable (a>0), then

e if control is expensive p — oo then the minimum control input to
stabilize the plant is obtained with the input u=-2|a|x, which moves
the unstable pole to its mirror image —-a

e if control is cheap (p — 0), the closed loop bandwidth is roughly 1/,/p
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Example: Scalar system Kalman filter

Scalar linear system

z(t) = az(t) + u(t) + v1 (1), y(t) = z(t) + v2(t)

with covariances E{v,?}=R,, E{Vv,%2}=R,, E{v,v,}=0.

Riccati equation
2ap + r1 —p2/fr2 =0

k=a,—|—\/a2—|-'r1/r2

and estimation error dynamics

CH(1) = —(Ja? + r1/r)i

gives

Interpretation: measurements discarded if too noisy.
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The Servo Problem

Preferred way: augment system with reference model

d
_xref(t) — Arefwref(t) ~+ Br:(t)

dt
e(t) = zrer(t) — ()
where the reference model states are measurable, and use

J = { lim / e’ Qie + vl Qou] dt}
T—00
However, when r is assumed to be constant the solution is
u(t) = —Lz(t) + Lyerrz(¢)

where L . is determined so that static gain of closed-loop
(r,~>z) equals the identity matrix
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LQG and loop shaping

LQG: simple to trade-off response-time vs. control effort
- but what about sensitivity and robustness?

These aspects can be accounted for using the noise models
- Sensitivity function: transfer matrix w >z
— Complementary: transfer matrix n>z

Example: S forced to be small at low frequencies by letting
(some component of) w, affect the output of the system, and
let w; have large energy at low frequencies,
1
w1 (t) = v1(t)
p+o
(delta small, strictly positive, to ensure stabilizability)
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LQG Control: pros and cons

Pros:

Simple to trade off response time vs. control effort
Applies to multivariable systems

Cons:

Often hard to see connection between weight matrices

Q:, Q,, Ry, R, and desired system properties (e.g. sensitivity,
robustness, etc)

In practice, iterative process in which Q; and Q, are adjusted until
closed loop system behaves as desired

Poor robustness properties in general
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Summary

e State-space theory recap:
— Controllability, observability, stabilizability, detectability
— State feedback and observers
e Modeling disturbances as white noise
— Mean, covariance, spectrum
— Spectral factorization: disturbances as filtered white noise
e Linear-quadratic controller
- Kalman-filter + state feedback
— Obtained by solving Riccati equations
— Focuses on time-responses
— Loop shaping and robustness less direct
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